
Numéro National de Thèse : 2020LYSEN054

THÈSE DE DOCTORAT DE L’UNIVERSITÉ DE LYON
opérée par

l’École Normale Supérieure de Lyon

École Doctorale N◦512
École Doctorale en Informatique et Mathématiques de Lyon

Discipline : Informatique

Soutenue publiquement le 19/10/2020, par :
Ida Tucker

Functional encryption and distributed signatures
based on projective hash functions,

the benefit of class groups

Chiffrement fonctionnel et signatures distribuées
fondés sur des fonctions de hachage à projection,

l’apport des groupes de classes

Devant le jury composé de :

Abdalla Michel, Directeur de Recherche, CNRS, DIENS Paris Rapporteur
Damgård Ivan, Professor, Aarhus University (Danemark) Rapporteur
Agrawal Shweta, Associate Professor, I.I.T. Madras (Inde) Examinatrice
Fouque Pierre-Alain, Professeur, Université Rennes 1 Examinateur
Ràfols Carla, Lectora Tenure Track, Universitat Pompeu Fabra (Espagne) Examinatrice
Laguillaumie Fabien, Professeur, Université Claude Bernard Lyon 1 Directeur de thèse
Castagnos Guilhem, Maître de Conférences HDR, Université de Bordeaux Co-directeur de thèse

Résumé

Un des enjeux actuels de la recherche en cryptographie est la mise au point de primitives
cryptographiques avancées assurant un haut niveau de confiance. Dans cette thèse, nous nous
intéressons à leur conception, en prouvant leur sécurité relativement à des hypothèses algo-
rithmiques bien étudiées.

Mes travaux s’appuient sur la linéarité du chiffrement homomorphe, qui permet d’effectuer
des opérations linéaires sur des données chiffrées. Précisément, je suis partie d’un tel chiffre-
ment, introduit par Castagnos et Laguillaumie à CT-RSA’15, ayant la particularité d’avoir un
espace des messages clairs d’ordre premier. Afin d’aborder une approche modulaire, j’ai conçu
à partir de ce chiffrement des outils techniques (fonctions de hachage projectives, preuves
à divulgation nulle de connaissances) qui offrent un cadre riche se prêtant à de nombreuses
applications.

Ce cadre m’a d’abord permis de construire des schémas de chiffrement fonctionnel ; cette
primitive très expressive permet un accès mesuré à l’information contenue dans une base de
données chiffrée. Puis, dans un autre registre, mais à partir de ces mêmes outils, j’ai conçu des
signatures numériques à seuil, permettant de partager une clé secrète entre plusieurs utilisa-
teurs, de sorte que ceux-ci doivent collaborer afin de produire des signatures valides. Ce type
de signatures permet entre autres de sécuriser les portefeuilles de crypto-monnaie.

De nets gains d’efficacité, notamment en termes de bande passante, apparaissent en instan-
ciant ces constructions à l’aide de groupes de classes. Mes travaux se positionnent d’ailleurs
en première ligne du renouveau que connâıt, depuis quelques années, l’utilisation de ces objets
en cryptographie.

1

Abstract

One of the current challenges in cryptographic research is the development of advanced cryp-
tographic primitives ensuring a high level of confidence. In this thesis, we focus on their design,
while proving their security under well-studied algorithmic assumptions.

My work grounds itself on the linearity of homomorphic encryption, which allows to per-
form linear operations on encrypted data. Precisely, I built upon the linearly homomorphic
encryption scheme introduced by Castagnos and Laguillaumie at CT-RSA’15. Their scheme
possesses the unusual property of having a prime order plaintext space, whose size can essen-
tially be tailored to ones’ needs. Aiming at a modular approach, I designed from their work
technical tools (projective hash functions, zero-knowledge proofs of knowledge) which provide
a rich framework lending itself to many applications.

This framework first allowed me to build functional encryption schemes; a highly expressive
primitive allowing for fine-grained access to the information contained in e.g., an encrypted
database. Then, in a different vein, but from these same tools, I designed threshold digital
signatures, allowing a secret key to be shared among multiple users, so that the latter must
collaborate in order to produce valid signatures. Such signatures can be used, among other
applications, to secure crypto-currency wallets.

Significant efficiency gains, namely in terms of bandwidth, result from the instantiation
of these constructions from class groups. This work is at the forefront of the revival these
mathematical objects have seen in cryptography over the last few years.

3

Acknowledgments

Je ne peux pas assez remercier mes co-directeurs Guilhem Castagnos et Fabien Laguillaumie.1

Le temps et la patience que vous m’avez accordé n’a jamais cessé de me surprendre. Et au
delà du rôle académique d’encadrants que vous avez assuré à merveille – qu’il s’agisse d’une
bande-son pour accompagner mon humeur, d’une BD pour alléger ma frustration, ou tout
simplement vos blagues et votre bonne humeur – vous avez toujours su me faire rire quand je
touchais le fond, me motiver quand j’étais à bout, me féliciter et m’encourager (même quand
mes prestations étaient, disons le, médiocres).

I am extremely grateful to Michel Abdalla and Ivan Damg̊ard for reviewing this thesis. I
know it was a lot of work, and that I am fortunate they agreed to it. Thank you also Shweta
Agrawal, Pierre-Alain Fouques, and Càrla Rafols for accepting to be part of my Jury.

Ai miei coautori Dario Catalano e Federico Savasta, grazie per le vostre idee perspicaci, la
vostra pazienza e la vostra attenzione. Un ringraziamento speciale a Federico per aver corretto
attentamente il mio italiano e per la sua positività.

A mi futuro co-autor (toco madera) Daŕıo Fiore, gracias por recibirme en Madrid para
mi Post-Doc ¡Estoy deseando que llegue! Y también por su flexibilidad en las condiciones de
inicio, que (con suerte) hará que mi defensa sea un poco menos angustiante.

Thank you Dennis Hofheinz for accepting to have me as a summer intern; even though
things didn’t turn out as expected, the week I spent with the crypto group at ETH was
brilliant, I regret not having been able to spend the intended months with you all, and I hope
I will have more time to dedicate to our project in the short term future.

To the Crypto group of Aarhus University, and in particular Claudio Orlandi, thank you for
your warm welcome, dynamism and enthusiasm. I also hope that I will have the opportunity
to come back, and spend a decent amount of time working with the group.

Merci aux (ex-)membres de l’équipe AriC pour votre bonne humeur lors des pauses café (et
le reste du temps aussi d’ailleurs). En particulier, merci Fabrice pour ton rire résonnant, ton
sourire contagieux; Alice pour ton calme rassurant, ton humour pétillant et tranchant; et à vous
deux pour vos nombreux conseils. Merci Weiqiang d’avoir été un super co-bureau, l’équilibre
parfait entre discrétion et fou-rires. Merci Florent pour ton amitié tout simplement. Thank you
Miruna and Radu for the energy and fun you bring to the team every time you come to Lyon,
and for risking your life rock climbing with me. Thank you Huyen for sharing the office, and
for introducing me to flavours I had never imagined existed. Merci Octavie pour ta tchatche,
et la bonne humeur que tu transmet à tous ceux qui t’entourent. Merci Nathalie de m’aider à
m’aérer l’esprit avec nos footings au parc Gerland, et pour tous les moments agréables passés
avec toi; merci à toi et à Natacha pour l’organisation des repas des informaticiennes. J’en
profite pour remercier Marie×2, Chiraz, Nelly, Kadiatou et Virginie d’avoir répondu à mes
milles et unes questions et d’avoir géré avec patience et efficacité le tas de nœuds qu’est (à mes
yeux) l’administration liée à ma thèse. Thank you Joris, Elena, Anastasia, Alexandre for always
being up for a beer; Alonso for humoring my spanish, thank you all other young (current and

1L’ordre est alphabétique, pas de jaloux.

5

ex) AriC members for sharing drinks and culinary experiments (in pre-covid times of course)
at the gouters AriC.2 Un grand merci aux ‘ex-grimpeurs’ d’avoir animé bon nombre de mes
vendredi midis, pour ces sorties en falaise, ces BBQ copieux, et pour mon premier aperçu des
anneaux de Saturne, et tout particulièrement à Alain, pour m’avoir fait découvrir les petites
cantines, et d’avoir accepté la tâche ingrate de relire mon introduction. Merci Nicolas Louvet
pour tes blagues, tes potins, et pour tes passages réguliers m’offrant discussions et distraction.

Dans les contrées occidentales du LIP, j’aimerais aussi remercier Etienne, qui m’a fait
découvrir le VTT et dont l’énergie débordante m’a bien aidée cette dernière année; ainsi que
Alexandre qui m’a encouragé en les moments les plus difficiles de la rédaction de ma thèse. Plus
loin encore, sur le territoire bordelais, merci Christine Bachoc pour tes mots encourageants
qui ont résolument contribué à ma reprise d’études.

D’un point de vue plus personnel (mais tout aussi important à mon cheminement), sans
Antoine, mon colocataire à la fois débordant d’énergie et sensible, ma santé mentale en aurait
pris un coup: notre gourmandise partagée (à noter son hummus exquis) et sa simple présence a
su me distraire de nombreuses préoccupations. Merci Fany, pour toutes les sorties au mur et en
montagne mais aussi de ne jamais fatiguer et de danser jusqu’au bout de la nuit. Merci Lucas,
Juanadil et Julien, pour la légèreté que vous avez apporté apporté à mes dernières semaines à
Lyon. Merci Melissa et Carlos, pour votre folie, votre créativité débordante et pour l’aura de
rire et de joie que vous portez autours de vous. Merci Alice d’être une des personnes les plus
fortes que je connaisse, de croire qu’il y a en moi une super-héröıne.

Merci à la fanfare Marcel Frontale, et à l’atelier du Chat Perché. Je ne vais pas tous
vous nommer, mais rarement ai-je rencontré de groupe de personnes aussi positives, altruistes,
ouvertes, et fondamentalement belles que vous.

Grazie a te Fra, anche se niente è mai semplice, per le innumerevole volte che mi hai
ascoltato, e mi hai consigliato. Per le serate a la triche, la giocoleria e il tuo contagioso spirito
Peter Pan.

Finally, to end these acknowledgements with an original touch, thank you Jane and Tony
for the huge freedom you have always granted me.

2Et oui, à 28 ans ça fait encore des goûters.

6

8

Contents

Résumé 1

Abstract 3

Remerciements/Acknowledgment 5

Contents 9

Résumé long en français 13

1 Introduction 23
1.1 Advanced Cryptography . 23
1.2 Projective Hash Functions . 26
1.3 Linearly Homomorphic Encryption and the CL Framework 26
1.4 Instantiating the CL Framework from Class Groups 27
1.5 Contributions . 28

1.5.1 Projective Hash Functions from the CL Framework 28
1.5.2 Zero-knowledge Proofs and Arguments for the CL Framework 28
1.5.3 Tighter Security and Improved Efficiency for Functional Encryption . . 29
1.5.4 Distributing the Elliptic Curve Digital Signature Algorithm 30

1.6 Road Map . 30

2 Preliminaries 33
2.1 Notations . 33
2.2 Secure Multi-Party Computation (MPC) . 34
2.3 Provable Security . 36

2.3.1 Adversary Model . 36
2.3.2 Security Definitions . 37

2.4 Common Problems . 39
2.4.1 Discrete Logarithm Problems . 39
2.4.2 The Decisional Composite Residuosity Problem 40

2.5 Basic Cryptographic Primitives . 40
2.5.1 Public Key Encryption . 41
2.5.2 Linearly Homomorphic Public Key Encryption 42
2.5.3 Collision Resistant Hashing . 43
2.5.4 Signature Schemes . 44
2.5.5 Commitments . 45

2.6 Background on Class Groups . 46
2.6.1 Imaginary Quadratic Fields and Class Groups 47
2.6.2 The Discrete Logarithm Problem and Computing the Class Number . . 49

9

CONTENTS CONTENTS

2.6.3 Key Sizes and Timings . 50
2.7 Distributions . 51

2.7.1 Sampling Close to the Uniform Distribution 52
2.7.2 Properties of Almost Uniform Distributions 52
2.7.3 Technical Tools on Discrete Gaussian Distributions 54

2.8 Zero-Knowledge Proofs and Arguments . 56
2.8.1 Zero-Knowledge Proofs . 56
2.8.2 Zero-Knowledge Arguments . 57
2.8.3 Groups of Unknown Order . 59

3 Enriching the CL framework 63
3.1 The CL Framework . 64

3.1.1 Definition of the CL Framework . 65
3.1.2 Instantiation from Class Group Cryptography 66
3.1.3 Instantiating Distributions . 66

3.2 Hard Problems in the CL Framework . 68
3.2.1 Hard Subgroup Membership Problem 68
3.2.2 Decision Diffie Hellman . 69
3.2.3 Extended Decision Diffie Hellman in F 69
3.2.4 Low Order & Strong Root Assumptions 70
3.2.5 Summary of Assumptions in the CL Framework 72

3.3 Projective Hash Functions from the CL Framework 73
3.3.1 Subgroup Membership Problems . 73
3.3.2 Projective Hash Functions . 75
3.3.3 Homomorphic Properties . 76
3.3.4 Smoothness . 79
3.3.5 Decomposability . 80

3.4 Public Key Encryption from Projective Hash Functions 82
3.4.1 Security against Passive Adversaries . 83
3.4.2 Security against Active Adversaries . 85
3.4.3 Extended Projective Hash Functions . 86

3.5 Linearly Homomorphic PKE from the CL Framework 89
3.5.1 Original Castagnos-Laguillaumie PKE Secure under DDH-f 89
3.5.2 Enhanced Variant Secure under DDH-f 91
3.5.3 Linearly Homomorphic PKE Secure under HSM-CL 91
3.5.4 Relations between Assumptions DDH-CL, DDH-f and HSM-CL 93

3.6 Zero-Knowledge Proofs for the CL Framework 93
3.6.1 A Zero-Knowledge Proof of Knowledge for Rcl-dl 94
3.6.2 A trick to improve efficiency. 96

3.7 Zero-Knowledge Arguments for the CL Framework 98

4 Functional Encryption for Computing Inner Products 105
4.1 Inner Product Functional Encryption . 109

4.1.1 Inner Product Functional Encryption 109
4.1.2 Security . 110

4.2 Building IPFE from PHF . 112
4.2.1 Compatibility Properties for PHFs . 112
4.2.2 Associated Matrix . 113
4.2.3 Confidentiality . 114

10

CONTENTS CONTENTS

4.2.4 Integrity . 118
4.2.5 Inner Product Safe PHFs . 124

4.3 IPFE Secure against Passive Adversaries from PHFs 125
4.3.1 Generic Construction . 125
4.3.2 Computing Inner Products Modulo a Prime 130

4.4 IPFE Secure against Active Adversaries from PHFs 135
4.5 Efficiency Comparisons . 143

4.5.1 Modular IPFE Secure against Passive Adversaries 144
4.5.2 IPFE Secure against Active Adversaries 147

4.6 Applications and Perspectives for Future Work 148
4.6.1 Application to Non Zero Inner Product Encryption 148
4.6.2 Simulation Based Security . 149

5 Distributing EC-DSA 155
5.1 Threshold Signature Algorithms . 159

5.1.1 Threshold Signature Scheme . 159
5.1.2 The Elliptic Curve Digital Signature Algorithm (EC-DSA) 159
5.1.3 Security Notions for Threshold Signatures 161

5.2 Two Party EC-DSA from PHFs . 163
5.2.1 The Double Encoding Problem . 164
5.2.2 EC-DSA-Friendly PHF . 166
5.2.3 Zero-Knowledge Proofs . 167
5.2.4 Construction . 167
5.2.5 Simulation Based Security . 167
5.2.6 Instantiation from the HSM-CL Based PHF 177
5.2.7 Implementation and Efficiency Comparisons 179

5.3 Full Threshold EC-DSA . 182
5.3.1 A Note on the Underlying Assumptions 183
5.3.2 Interactive Setup for the HSM-CL Based Encryption Scheme 184
5.3.3 Full Threshold EC-DSA Protocol . 187
5.3.4 Security . 190
5.3.5 Efficiency Comparisons . 201

6 Conclusion and Open Problems 207

Bibliography 211

List of abbreviations 227

List of figures 229

List of tables 231

Appendix 234
A Comparing our PHF properties to those of [BBL17] 234
B Zero Knowledge Property of the ZKPoK for Rcl-dl 237
C Lindell’s interactive assumption on Paillier’s cryptosystem 241

11

Résumé long en français

Dans un schéma de chiffrement à clé publique, chaque utilisateur a sa propre clé secrète qui,
comme son nom l’indique, est maintenue secrète. Celle-ci est associée à une clé publique, mise
à disposition de tous. N’importe qui, en utilisant une clé publique, peut chiffrer un message
confidentiel et l’envoyer au propriétaire de la clé. Afin que le système de chiffrement soit
considéré sûr, il est nécessaire que, sans la clé secrète associée qui permet de déchiffrer, aucune
information ne puisse fuir sur le message clair sous-jacent hormis ce qui peut être appris sans
même voir le texte chiffré (par exemple, la langue d’une communication).

Dans ce qui précède, le terme “sûr” a été employé de manière assez vague ; définir cette no-
tion est en fait une tâche non triviale en cryptographie. Afin de garantir un niveau élevé de con-
fiance dans la sécurité des systèmes cryptographiques, la sécurité dite prouvée s’est développée.
Un des premiers exemples de sécurité prouvée fut présenté il y a près de quarante ans dans
les travaux fondateurs de Goldwasser et Micali [GM84]. Ils se fondent sur le principe que la
sécurité des systèmes cryptographiques repose sur des hypothèses mathématiques précises. Ces
hypothèses peuvent être générales (comme l’existence de fonctions à sens unique) ou spécifiques
(comme la difficulté de calculer des logarithmes discrets dans certaines familles de groupes,
ou la factorisation des nombres entiers). L’argument de sécurité est une réduction, au sens de
la théorie de la complexité, transformant tout adversaire contre un protocole cryptographique
en un algorithme qui résout le problème mathématique sous-jacent. Afin de factoriser les ef-
forts des cryptanalystes, et de se reposer sur des problèmes mathématiques étudiés depuis bien
avant l’existence de la cryptographie moderne (voire même des ordinateurs), il est préférable
de se réduire à un petit nombre de problèmes ciblés.

La cryptographie avancée
Le chiffrement à clé publique permet donc de communiquer de façon sûre et efficace via un canal
non sécurisé. Il est clair qu’aujourd’hui, du fait de leur omniprésence dans la société moderne,
nous utilisons les technologies de l’information pour bien plus que la simple communication. En
effet, de nombreuses tâches, impliquant souvent un traitement de données confidentielles, sont
actuellement réalisées en ligne. Il est essentiel que ce flux colossal d’information soit protégé,
afin que nul individu, trop curieux ou mal intentionné, ne puisse accéder à des informations
auxquelles il ne devrait pas avoir accès, ni abuser d’une quelconque manière de son pouvoir.
Dans le même temps, si les solutions visant à protéger ces données entrainent un surcoût
excessif en matière de temps de calcul ou de bande passante, ces solutions ne seront guère
adoptées en pratique.

Ainsi, pour faire face à de nombreux problèmes du “monde réel”, qui ne se limitent pas à
sécuriser des communications, il faut définir des primitives cryptographiques avancées. Parmi
ces problèmes du monde réel, on peut citer par exemple les systèmes de vote sécurisés, ou le
fait de permettre à un appareil ayant des capacités de calcul limitées de déléguer ses calculs à
un autre appareil, potentiellement malveillant, mais nettement plus puissant.

13

RÉSUMÉ LONG EN FRANÇAIS

Les protocoles réalisant ces primitives avancées doivent être à la fois efficaces, de sorte
qu’ils puissent remplacer sans encombre les protocoles traditionnels non sécurisés, et prouvés
sûrs, afin de garantir un niveau de confiance élevé à l’égard de ces solutions. De plus, en raison
de l’évolution constante des attaquants, et des tâches de plus en plus sensibles effectuées
sur internet (prise de rendez-vous médicaux, remboursements d’actes de soins, paiements en
ligne, élections etc.), la nécessité d’identifier et de mitiger les points individuels de défaillance
est primordiale. Afin d’illustrer cela, considérons deux exemples concrets de tâches que le
chiffrement traditionnel ne peut accomplir ; pour chacun d’entre eux, nous présentons une
solution spécifique fournie par la cryptographie avancée.

Exemple 1 - Accès mesuré à l’information. Considérons des chercheurs ayant besoin
d’effectuer une analyse sur les données médicales possédées par un hôpital. Supposons par
ailleurs que l’hôpital veuille partager ces données, afin de faciliter les innovations et découvertes
biomédicales ; ceci sans divulguer d’informations superflues sur l’identité des patients pour des
raisons évidentes de confidentialité. On peut raisonnablement présumer que cet hôpital dispose
d’une base de données chiffrée contenant les informations confidentielles des patients. Si la base
de données est chiffrée en utilisant un chiffrement traditionnel, les chercheurs – ne disposant
que de la base de données chiffrée – n’apprennent rien sur les données sous-jacentes ; à l’inverse,
si l’hôpital leur accorde la clé de déchiffrement, ils apprennent tout le contenu de la base de
données. Il est probable que cela représente bien plus d’informations que ne le requiert leur
analyse. Une autre possibilité serait que l’hôpital lui-même effectue l’analyse sur la base de
données, et partage les résultats. Pour des raisons évidentes (personnel hospitalier surchargé,
non qualifié pour l’exécution de ces calculs...), cette solution est insatisfaisante.

Une solution idéale serait de permettre aux chercheurs d’effectuer leur analyse statistique
à partir d’une base de données chiffrée, de telle sorte qu’ils n’apprennent que le résultat de
l’analyse, mais rien d’autre sur le contenu de la base de données. Si une autorité de confiance
(ce pourrait être l’hôpital) approuve cette analyse avant de donner aux chercheurs les moyens
de l’effectuer, alors cette solution protège la confidentialité des patients, tout en fournissant
de précieuses ressources à la recherche biomédicale.

Le chiffrement fonctionnel, dont l’étude a été amorcée par O’Neill [O’N10] et indépenda-
mment par Boneh et al. [BSW11], est une primitive cryptographique avancée résultant d’une
série de raffinements du chiffrement à clé publique. Cette primitive permet de contrôler, à
partir d’un seul chiffré, la portion des informations sous-jacentes que chaque utilisateur peut
extraire. Plus précisément, le chiffrement fonctionnel permet à un utilisateur de récupérer une
fonction f(m) du message chiffré m, sans divulguer d’autres informations sur m.

La primitive permet de générer des clés de déchiffrement fonctionnelles skfi – associées
à des fonctionnalités spécifiques fi – à partir d’une clé secrète mâıtresse msk ; celles-ci sont
attribuées aux bénéficiaires concernés. Un chiffré c, chiffrant le texte en clair m, est mis à
disposition. À partir de c un utilisateur possédant skfi peut récupérer fi(m) en déchiffrant c
avec skfi .

Pour reprendre l’exemple précédent, l’hôpital peut chiffrer sa base de données à l’aide d’un
schéma de chiffrement fonctionnel et diffuser librement le chiffré qui en résulte. Ensuite, à la
demande d’un groupe de chercheurs, souhaitant calculer une fonction f appliquée à la base
de données, l’hôpital calcule une clé de déchiffrement fonctionnelle skf associée à f et la leur
renvoie. Cette clé de déchiffrement leur permet de calculer la fonction demandée de la base de
données, et même de toute base de données mise à jour, chiffrée avec la même clé publique.

Malgré l’attention considérable que la recherche scientifique consacre à cette question, la
mise au point de systèmes de chiffrement fonctionnel efficaces permettant à la fois d’évaluer
toute fonction et d’atteindre un niveau de sécurité satisfaisant reste un problème ouvert. Toutes

14

RÉSUMÉ LONG EN FRANÇAIS

les constructions offrant une telle fonctionnalité sont loin d’être utilisables en pratique. En
outre, soit elles limitent le nombre de clés de déchiffrement que l’adversaire peut demander
[SS10], soit elles s’appuient sur des hypothèses cryptographiques peu comprises et insuffisam-
ment étudiées [GGHZ16]. De ce fait, la recherche s’est penchée sur des chiffrements fonctionnels
se restreignant au calcul de classes de fonctions spécifiques, dans l’espoir que de telles primi-
tives puissent être réalisées sous des hypothèses cryptographiques bien comprises, tout en étant
suffisamment efficaces pour bénéficier à des applications concrètes.

Un exemple probant est l’étude du chiffrement fonctionnel calculant des produits scalaires,
formalisé en premier lieu par Abdalla et al. dans [ABDP15]. Cette variante restreint la fonction-
nalité calculée au produit scalaire de deux vecteurs (l’un résultant d’une clé de déchiffrement,
l’autre d’un message). Une telle restriction permet non seulement de développer notre mâıtrise
du chiffrement fonctionnel, mais bénéficie également à diverses applications pratiques, al-
lant de son utilisation immédiate, qui permet d’effectuer des opérations linéaires sur des
données chiffrées, à la construction d’autres systèmes cryptographiques plus complexes [ALS16,
ABP+17,KY19].

Dans cette thèse, nous présentons des constructions génériques de chiffrement fonction-
nel calculant des produits scalaires. Ceux-ci peuvent être instanciés à partir d’hypothèses
algorithmiques diverses et sont suffisamment efficaces pour être utilisés dans des systèmes
d’information modernes à grande échelle.

Exemple 2 - Le caractère secret des clés secrètes. Considérons à présent une probléma-
tique quelque peu orthogonale. Que l’on considère un chiffrement symétrique, un chiffrement
à clé publique, ou bien n’importe quel schéma cryptographique visant à protéger la sécurité
d’un système, si la clé secrète tombe entre de mauvaises mains, alors la sécurité de l’ensemble
du système est compromise.

La nécessité que cette clé reste secrète pose plusieurs problèmes. Tout d’abord, le stockage
de la clé secrète en un unique lieu, qu’il s’agisse d’un ordinateur à usage personnel, d’un serveur
ou encore d’une carte à puce, réduit la sécurité du système cryptographique à la difficulté de
pénétrer dans ce périphérique et de voler la clé. Cela peut être (c’est en fait souvent le cas) bien
plus facile pour un attaquant que de casser le système cryptographique lui-même. Par ailleurs,
l’absence de sauvegarde de la clé introduit le risque de sa perte si une défaillance logicielle ou
matérielle survenait. À l’inverse, le fait de conserver la clé sur plusieurs dispositifs ne fait que
faciliter la tâche de l’attaquant, car les cibles qu’il peut choisir se multiplient, réduisant ainsi
la sécurité du système à celle du périphérique le plus vulnérable.

Un exemple tangible où le vol de clés peut avoir des conséquences fâcheuses est dans le
contexte des crypto-monnaies. Une manière répandue de valider les transactions de crypto-
monnaies consiste à exiger du payeur qu’il authentifie sa transaction. Pour ce faire, il signe la
transaction avec sa clé de signature secrète associée à un protocole de signature numérique.
Par conséquent, toute infraction se traduisant par le vol de cette clé de signature peut entrâıner
de lourdes pertes financières.

L’idée du partage de secret fut introduite en 1979 par Blakley [Bla79] et Shamir [Sha79]
afin de résoudre le problème ci-dessus. Un système de partage de secret permet de partager un
secret parmi un groupe d’individus de manière à ce que seules des coalitions bien définies de
ces individus puissent ensemble récupérer le secret, tandis qu’aucune autre coalition ne peut
obtenir d’informations à son sujet. Un système à seuil (t, n) [Sha79] est un cas particulier de
partage de secret. Dans ce cas, le secret est partagé entre n participants de sorte que tout sous-
ensemble de strictement plus de t participants peut reconstruire le secret, tandis que s’ils ne
sont que t ou moins, aucune information sur le secret n’est divulguée. Il est possible de renforcer
plus encore la sécurité de ces deux concepts en utilisant la cryptographie à seuil, introduite

15

RÉSUMÉ LONG EN FRANÇAIS

par les travaux de Boyd [Boy86], Desmedt [Des88], et Desmedt et Frankel [DF90]. Comme
pour le partage de secret à seuil mentionné ci-dessus, la cryptographie à seuil (t, n) permet à n
utilisateurs de partager une clé secrète commune de sorte que tout sous-ensemble de t+1 d’entre
eux puisse utiliser cette clé pour déchiffrer ou signer, tandis que toute coalition de t ou moins
utilisateurs ne peut rien faire. La particularité de ce système est qu’il permet d’utiliser une
clé partagée sans jamais la reconstruire explicitement. Cela implique qu’un sous-ensemble de
strictement plus de t participants doit participer activement au protocole chaque fois que la clé
secrète est utilisée. En particulier, cela signifie qu’un adversaire doit corrompre simultanément
au moins t+ 1 des participants (ou de manière équivalente pénétrer dans t+ 1 périphériques)
pour pouvoir effectuer l’opération sensible en question. De tels protocoles distribués relèvent
du domaine du calcul multipartite sécurisé : ce sous-domaine de la cryptographie, qui date des
articles de Yao [Yao82] et Goldreich et al. [GMW87], a pour but de développer des méthodes
permettant à plusieurs utilisateurs de calculer collectivement une fonction à partir de leurs
données respectives, tout en préservant la confidentialité de ces données.

Nous élaborons des variantes à seuil du schéma de signature standardisé utilisé pour valider
les transactions Bitcoin : l’algorithme de signature numérique EC-DSA. Comme nous allons
le voir, bien que pour d’autres protocoles de signature, des variantes à seuil efficaces existent
depuis des décennies (c’est le cas des signatures RSA [GJKR96a] et Schnorr [Sch91,SS01]), la
construction de variantes à seuil efficaces de EC-DSA s’est avérée nettement plus difficile.

La conception de systèmes cryptographiques avancés peut, à première vue, sembler une
tâche ardue. En effet, les objectifs de tels systèmes sont bien plus complexes – à la fois en
matière de fonctionnalité et de sécurité – que ceux de la cryptographie traditionnelle. Par
conséquent, une approche logique pour concevoir de tels systèmes consiste à partir de briques
élémentaires plus simples. Si ces entités élémentaires sont quelque peu malléables, dans le
sens où l’on peut les combiner et les assembler, elles nous donnent les moyens de réaliser des
fonctionnalités complexes. En outre, s’il est possible d’établir une interface claire définissant
les propriétés de sécurité assurées par ces briques, il est alors bien plus simple de prouver la
sécurité des constructions qui en résultent. Si l’on requiert de plus que ces briques (et par
conséquent les constructions) puissent être instanciées à partir d’un large panel d’hypothèses
cryptographiques – elles sont alors dites génériques – l’on évite de mettre tous nos œufs dans
un même panier. En effet, concentrer ses efforts et ses ressources à l’élaboration de schémas à
partir d’une seule hypothèse cryptographique présente un risque : si le problème sous-jacent se
révèle moins difficile que prévu, on pourrait tout perdre. Enfin, si les constructions résultant
de ces briques sont fines, c’est-à-dire soigneusement conçues, et que leur analyse de sécurité est
précise, les systèmes cryptographiques obtenus peuvent être extrêmement flexibles et efficaces.

Cette approche modulaire, générique et fine a été celle de ma thèse.

Fonctions de hachage projectives
La principale brique de base que nous utilisons est la notion de fonction de hachage projective.
Ce concept a été formalisé par Cramer et Shoup il y a une vingtaine d’années [CS02]. Les
fonctions de hachage projectives ont été initialement introduites afin de permettre la réalisation
de systèmes de chiffrement génériques sûrs face à des adversaires qui non seulement observent
les communications chiffrées, mais tentent activement d’obtenir des informations en exécutant
le protocole dans des conditions non conformes à sa spécification. Un tel comportement imprévu
pourrait, entre autres, entrâıner la fuite d’informations sur la clé secrète.

Dans le contexte du chiffrement à clé publique, pour faire face à des adversaires qui ne
font qu’espionner (dits passifs), il suffit d’assurer la confidentialité des messages chiffrés. Afin

16

RÉSUMÉ LONG EN FRANÇAIS

de prouver qu’un chiffrement est sûr face à de tels adversaires, on donne à l’adversaire les
paramètres publics du système, ainsi qu’un chiffré challenge c∗ chiffrant soit m0 soit m1, où
m0 et m1 sont des messages choisis par l’adversaire. On démontre alors que l’adversaire ne peut
distinguer lequel des messages a été chiffré. Afin d’assurer une protection supplémentaire contre
les adversaires malicieux (dits actifs), il faut également veiller à l’intégrité des textes chiffrés.
Afin de modéliser cela, en plus des paramètres publics du système, on octroie à l’adversaire le
résultat du déchiffrement de chiffrés de son choix (à l’exception du chiffré challenge).

En vue d’adopter une approche modulaire dans la conception de systèmes cryptographiques
avancés, nous créons des fonctions de hachage projectives avec des propriétés homomorphes. Un
cryptosystème est dit homomorphe si l’on peut publiquement manipuler des données confiden-
tielles. Par exemple, un système de chiffrement est linéairement homomorphe si, connaissant
les chiffrés c1 et c2 chiffrant les textes en clair m1 et m2, il est possible de produire un nouveau
chiffré c qui, lors de son déchiffrement, retourne la somme m1 + m2. Paradoxalement, bien
que les systèmes de chiffrement possédant de telles propriétés homomorphes sont extrêmement
utiles pour la conception de cryptosystèmes avancés plus complexes, ceux-ci ne peuvent attein-
dre le niveau de sécurité maximal attendu d’un système de chiffrement, c’est-à-dire la sécurité
face aux adversaires actifs3.

Pour en revenir à nos fonctions de hachage projectives, nous définissons également de nou-
velles propriétés caractérisant ces derniers, qui comprennent les critères essentiels nécessaires
au bon fonctionnement et à la sécurité de nos constructions plus complexes. Précisément, à
partir de la riche bôıte à outils que constituent ces fonctions de hachage projectives, nous
concevons des schémas de chiffrement linéairement homomorphes, des schémas de chiffrement
fonctionnels calculant des produits scalaires, et des protocoles de signature EC-DSA à seuil. En
s’inspirant des techniques de [CS02], nous sécurisons ces deux dernières constructions contre
tout adversaire passif ou actif.

Chiffrement linéairement homomorphe et le cadre CL
Comme mentionné précédemment, à partir de fonctions de hachage projectives ayant des pro-
priétés homomorphes, il est possible de créer des schémas de chiffrement linéairement homo-
morphes. En fait, le chemin qui a conduit à la rédaction de cette thèse n’a pas commencé avec
des fonctions de hachage projectives, mais plutôt par l’observation que l’on peut concevoir des
systèmes de chiffrement avancés dont la sécurité est prouvée, en s’appuyant sur la malléabilité
du chiffrement linéairement homomorphe.

Le premier schéma de chiffrement homomorphe (également le premier chiffrement prob-
abiliste) fut suggéré par Goldwasser et Micali dans [GM84], tandis que l’un des schémas les
plus aboutis, normalisé dans la norme ISO/IEC-18033-6, fût conçu par Paillier [Pai99].

Cette thèse se fonde sur un schéma de chiffrement bien plus récent, possédant des pro-
priétés innovantes et séduisantes. Précisément, nous nous appuyons sur le cadre introduit par
Castagnos et Laguillaumie à CT-RSA 2015 [CL15]. Ce cadre (le cadre CL) leur a permis de
concevoir un schéma de chiffrement linéairement homomorphe bénéficiant de la propriété peu
commune d’avoir un espace de texte clair d’ordre premier q, où q peut être choisi (avec cer-
taines restrictions) indépendamment du paramètre de sécurité. Par ailleurs, leur schéma est le
premier schéma de chiffrement linéairement homomorphe à la fois efficace, et dont la sécurité
repose uniquement sur une hypothèse de type logarithme discret.

En s’appuyant sur le cadre CL, nous formalisons de nouvelles hypothèses algorithmiques à

3N’importe qui peut calculer un chiffré de zéro, et peut donc – à partir du chiffré challenge c∗ chiffrant mb,
pour un certain b ∈ {0, 1} – calculer un chiffré de mb + 0 = mb différent de c∗. L’adversaire actif peut alors
demander le déchiffrement de ce dernier, découvrant ainsi quel message était chiffré.

17

RÉSUMÉ LONG EN FRANÇAIS

partir desquelles nous élaborons de précieux outils ; en particulier, nous concevons des fonctions
de hachage projectives ayant des propriétés homomorphes. Celles-ci permettent d’abstraire les
caractéristiques du cadre, ce qui permet une plus grande généricité dans nos travaux ultérieurs.

Nous observons que, lors de l’instanciation de nos constructions génériques, les schémas
les plus efficaces résultent soit du cadre CL, soit de celui dans lequel Paillier a conçu son
cryptosystème [Pai99]. Puisqu’un certain nombre de nos travaux s’inspirent de constructions
préexistantes basées sur le chiffrement de Paillier, nous nous y comparons, et ferons souvent
référence à son schéma. Qui plus est, de nombreuses similitudes peuvent être observées entre
la structure des deux cadres : ils consistent tous deux en un groupe G (dans lequel un certain
problème calculatoire est estimé difficile) contenant un sous-groupe F , généré par f ; dans
le sous-groupe F le calcul de logarithmes discrets peut être effectué efficacement. Les deux
chiffrements encodent les messages clairs dans l’exposant de f , et masquent cet encodage avec
un élément du groupe G. Cela permet d’effectuer des opérations linéairement homomorphes
sur les données chiffrées (puisque fm1fm2 = fm1+m2), tout en admettant un déchiffrement
efficace, car étant donné fm, la valeur de m peut être calculée rapidement.

Instanciation à partir de groupes de classes
Le cadre développé dans cette thèse présente une caractéristique essentielle que nous ex-
ploiterons. En effet, comme expliqué plus haut, il repose sur l’existence d’un groupe G dans
lequel on suppose qu’un certain problème algorithmique est difficile (cette difficulté est essen-
tielle à la sécurité des cryptosystèmes résultant du cadre), ainsi que d’un sous-groupe F de
G, d’ordre premier, dans lequel il est facile de calculer des logarithmes discrets. Une structure
algébrique particulière permet de matérialiser cette propriété peu commune : les groupes de
classes d’idéaux dans un corps quadratique imaginaire. Ceux-ci possèdent certaines spécificités
qui semblent difficiles à trouver dans d’autres groupes.

Les corps quadratiques imaginaires furent proposés comme base pour la conception de
cryptosystèmes à clé publique à la fin des années 1980 par Buchmann et Williams [BW88]. Ils
présentèrent une adaptation de l’échange de clés Diffie-Hellman dans les corps quadratiques
imaginaires et décrivirent brièvement une adaptation du chiffrement Elgamal dans ce même
cadre. De nombreux cryptosystèmes reposant sur cet objet algébrique ont depuis été conçus,
pour lesquels des implémentations efficaces ont été discutées, entre autres, dans [JW09].

Il convient de noter que l’intérêt pour la cryptographie se fondant sur les groupes de classes
a décliné après les attaques de Castagnos et al. [CL09,CJLN09] contre le cryptosystème NICE
[HPT99, PT00] et sa variante réelle [JSW08]. Ces attaques ne s’appliquent cependant pas à
notre cadre : elles récupèrent la clé secrète en exposant la factorisation du discriminant du
corps, alors que dans le cadre CL cette factorisation est publique.

Cela dit, cette branche de la cryptographie connâıt un regain d’intérêt du fait qu’elle offre
des solutions flexibles et efficaces. On peut citer son rôle dans la construction d’accumulateurs
ne nécessitant pas de configuration centralisée par une autorité de confiance [Lip12], de proto-
coles d’interversion de chiffrement [CIL17], de fonctions à délai vérifiables [BBBF18, Wes18],
d’arguments de connaissance à divulgation nulle de connaissance à la fois non interactifs, suc-
cincts et ne nécessitant pas de configuration centralisée par une autorité de confiance [BFS20],
et, comme nous le verrons au cours de cette thèse, de chiffrement fonctionnel calculant des
produits scalaires et de signatures à seuil EC-DSA.

En ce qui concerne les hypothèses sous-jacentes, la sécurité des cryptosystèmes découlant
du cadre CL est liée à la difficulté de calculer le nombre de classes. Les meilleurs algorithmes
connus actuellement pour résoudre ce problème (cf. [BJS10]) ont une complexité asymptotique
plus élevée que ceux résolvant le problème de la factorisation (ou le problème du logarithme

18

RÉSUMÉ LONG EN FRANÇAIS

discret dans les corps finis). Cela permet l’utilisation de clés plus courtes pour nos schémas de
chiffrement que pour les schémas de chiffrement reposant sur la difficulté de la factorisation
(tels que celui de Paillier). À cela s’ajoute le fait que les opérations arithmétiques dans les
groupes de classes sont quasi linéaires en utilisant de l’arithmétique rapide. Ces deux faits
contribuent à l’efficacité de nos protocoles résultant du cadre CL.

Contributions
Bien que la plupart des résultats présentés aient été publiés ou soient actuellement en cours
de révision, nous avons réorganisé nos résultats dans un souci de clarté, afin de les présenter
dans un ordre plus logique et modulaire, plutôt que de suivre l’ordre chronologique de nos
publications ou de regrouper les chapitres par publication. L’objectif est bien sûr de faciliter
la lecture.

Les résultats présentés ci-dessous sont principalement tirés d’une soumission actuelle (en
collaboration avec Guilhem Castagnos et Fabien Laguillaumie), et des articles suivants :
[CLT18a] présenté à Asiacrypt 2018 (en collaboration avec Guilhem Castagnos et Fabien
Laguillaumie); [CCL+19] présenté à Crypto 2019 et [CCL+20] présenté à PKC 2020 (tous
deux en collaboration avec Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie et Fed-
erico Savasta).

Fonctions de hachage projectives à partir du cadre CL

Dans cette thèse, nous formalisons de nouvelles hypothèses cryptographiques au sein du cadre
CL. Nous argumentons la difficulté des problèmes associés lorsque le cadre est instancié avec
des groupes de classes d’idéaux d’un corps quadratique imaginaire.

Nous définissons ensuite formellement la notion de fonction de hachage projective, ainsi que
les diverses propriétés (dont un grand nombre sont propres à nos travaux) nécessaires au bon
fonctionnement et à la sécurité de nos constructions. Nous illustrons toutes nos définitions et
propriétés à l’aide de trois exemples récurrents. Le premier découle de l’hypothèse décisionnelle
bien connue de Diffie-Hellman dans un corps fini ; le but de cet exemple étant de fournir une
instanciation avec laquelle la plupart des lecteurs seront familiers. Les deux autres exemples
récurrents découlent des hypothèses que nous définissons dans le cadre CL, appelées respec-
tivement HSM-CL et DDH-f .

Puisque les fonctions de hachage projectives sont utilisées comme briques de base pour nos
constructions ultérieures, tous nos cryptosystèmes peuvent être instanciés par nos hypothèses
dans le cadre CL, et donc à partir de cryptographie fondée sur les groupes de classes. Toutes nos
définitions tiennent compte du fait que les groupes dans lesquels nous travaillons peuvent être
d’ordre inconnu. Ce phénomène est en fait inhérent au cadre. Nous concevons en premier lieu
des schémas de chiffrement linéairement homomorphes à partir de ces fonctions de hachage
projectives. Leur conception suit une modeste adaptation de la construction générique de
Cramer-Shoup [CS02].

Preuves et arguments à divulgation nulle de connaissance étoffant le cadre

Pour nos protocoles de signature distribuée – puisque plusieurs parties effectuent conjointement
un calcul – nous devons assurer que les parties se conduisent correctement et se conforment
au protocole. Bien entendu, lorsqu’un participant prouve qu’il s’est comporté correctement,
aucune information sur sa contribution confidentielle au calcul ne doit fuir. Une preuve à divul-
gation nulle de connaissance est un protocole interactif entre un prouveur et un vérificateur,

19

RÉSUMÉ LONG EN FRANÇAIS

visant à démontrer qu’une affirmation est vraie en ne révélant rien de plus que la véracité de
l’affirmation.

Tandis qu’une preuve à divulgation nulle de connaissance convainc statistiquement le
vérificateur de cette vérité, un argument à divulgation nulle de connaissance convainc le
vérificateur sous des hypothèses calculatoires. Nous proposons des preuves et des arguments à
divulgation nulle de connaissance pour le cadre CL, prouvant par exemple qu’un texte chiffré
pour l’un de nos systèmes de chiffrement est calculé de manière honnête.

Notre cadre se distingue des groupes d’ordre connu où il est possible de reconnâıtre efficace-
ment les éléments du groupe, puisque dans le cadre CL, nous travaillons avec un sous-groupe
cyclique Gq := 〈gq〉 d’un groupe plus grand Ĝ, où gq est d’ordre inconnu, et les éléments de
Gq ne sont pas efficacement reconnaissables. Seuls les éléments résidant dans Ĝ peuvent être
efficacement reconnus. Il est impératif d’en tenir compte dans tous nos protocoles afin d’assurer
une sécurité contre tout adversaire malicieux.

Du fait que nos systèmes de chiffrement suivent une structure semblable au chiffrement
Elgamal, nous disposons de tout un arsenal de preuves et d’arguments à divulgation nulle
de connaissance pour les chiffrés Elgamal ainsi que pour prouver la connaissance de loga-
rithmes discrets dans des groupes d’ordre connu (par exemple, [Sch90, CP93]) sur lesquels
nous pouvons nous appuyer. S’inspirant en outre des travaux de D̊amgard et Fujisaki sur
les arguments de connaissance [DF02], et sur les travaux de Girault, Poupard et Stern sur les
preuves masquant statistiquement les contributions secrètes des parties [GPS06], qui tous deux
considèrent également des groupes d’ordre inconnu, nous concevons diverses techniques pour
surmonter les complications susmentionnées, avec divers compromis entre sécurité et efficacité.

Preuves de sécurité sans pertes et efficacité accrue pour le chiffrement fonc-
tionnel

Nous nous appuyons sur les idées sous-jacentes à la construction générique de [CS02] qui
permet, à partir de fonctions de hachage projectives, de concevoir des schémas de chiffrement
à clé publique sûrs contre tout adversaire actif. Notre but est de gérer le cas plus complexe du
chiffrement fonctionnel calculant des produits scalaires. Les messages sont alors des vecteurs,
et les adversaires ont accès à des informations supplémentaires sur les paramètres secrets du
système.

Pour cela, nous définissons de nouvelles propriétés pour les fonctions de hachage projec-
tives ; ces propriétés saisissent les critères essentiels permettant de construire des schémas de
chiffrement fonctionnels calculant des produits scalaires. Afin d’isoler ces propriétés spécifiques,
nous décortiquons les techniques de preuve utilisées par Agrawal et al. [ALS16] qui conçoivent
des schémas de chiffrement fonctionnels calculant des produits scalaires, prouvés sûrs contre
des adversaires passifs, mais à partir d’hypothèses algorithmiques spécifiques (et donc non
génériques). Cette décomposition nous permet d’identifier les étapes clés de leurs preuves, ce
qui profite à notre approche modulaire et générique tout en préservant l’efficacité de leurs
schémas.

Nous présentons ensuite des constructions génériques pour le chiffrement fonctionnel calcu-
lant des produits scalaires à partir de fonctions de hachage projectives possédant ces propriétés.
Notre première construction est prouvée sûre contre tout adversaire passif, c’est-à-dire que
lorsque le système est utilisé dans les conditions attendues, il ne fuit pas plus d’informations
que prévu. En instanciant cette construction à partir de l’hypothèse décisionnelle de Diffie-
Hellman, ou de l’hypothèse décisionnelle de résiduosité composite (DCR), nous retrouvons
les constructions de [ALS16,ABDP16], avec la même borne sur la sécurité ; lorsqu’elle est in-
stanciée à partir de nos hypothèses dans le cadre CL, nous obtenons de nouvelles constructions.

20

RÉSUMÉ LONG EN FRANÇAIS

Les instanciations basées sur DCR et sur le cadre CL donnent les schémas les plus efficaces à
ce jour, et calculent des produits scalaires dans Z.

Délaissant quelque peu la construction générique, nous construisons également des schémas
de chiffrement fonctionnel calculant des produits scalaires modulo un nombre premier à partir
du cadre CL, et obtenons les schémas les plus efficaces à ce jour ; nous comparons la vitesse
ainsi que la taille des chiffrés et des clés secrètes de notre schéma le plus efficace à ceux de
[ALS16] afin d’illustrer les améliorations concrètes que nous réalisons.

Cette première construction générique sûre contre tout adversaire passif est en quelque
sorte un tremplin pour construire un tel système sûr contre tout adversaire actif. En effet,
nous étendons ensuite la construction générique mentionnée ci-dessus de manière à en assurer
la sécurité contre tout adversaire actif, pouvant s’écarter arbitrairement du protocole. La
construction peut être instanciée à partir de tous nos exemples récurrents. Nous observons que
la construction obtenue est très proche de celle de Benhamouda et al. [BBL17], visant le même
modèle de sécurité, et atteignant la même fonctionnalité. Toutefois, nos techniques de preuves
divergent fondamentalement, nous permettant d’améliorer nettement la réduction de sécurité.
Cela justifie en particulier l’utilisation de clés secrètes et de chiffrés bien plus courts, tout en
maintenant un niveau de sécurité équivalent.

Nos travaux sont les premiers à démontrer que le chiffrement fonctionnel calculant des pro-
duits scalaires, sûr contre des adversaires actifs, est utilisable en pratique. En effet, lorsque nous
instancions notre construction générique, nous obtenons des schémas suffisamment efficaces
pour être utilisés dans des systèmes d’information modernes à grande échelle. Afin d’illustrer
cela, nous effectuons une comparaison théorique détaillée de l’efficacité de nos schémas, in-
stanciés à partir de diverses hypothèses, à ceux de [BBL17].

Protocoles distribués pour l’algorithme de signature standardisé EC-DSA

Afin de concevoir des variantes à seuil de l’algorithme de signature EC-DSA, diverses solutions
ont été proposées reposant sur les propriétés homomorphes du chiffrement de Paillier. Parmi
ces solutions, certaines gèrent le cas bipartite (c’est-à-dire t = 1 et n = 2) ; cette question a
d’abord été traitée par Mackenzie et Reiter dans [MR01], puis plus efficacement par Lindell
dans [Lin17a]. Tandis que d’autres travaux récents gèrent un seuil entièrement configurable
(tout t < n), à commencer par le protocole de Gennaro, Goldfeder et Narayanan dans [GGN16].

En dépit de la popularité du système de chiffrement de Paillier pour la construction de
protocoles EC-DSA à seuil, nous montrons que ce cryptosystème n’est en fait pas adapté à
la tâche. En effet, pour des raisons qui seront discutées dans la suite de cette thèse, ce choix
entrâıne un surcoût en matière de bande passante, et, dans certains cas, l’utilisation d’une
hypothèse interactive non standard portant sur le cryptosystème Paillier afin de prouver la
sécurité du protocole. En revanche, si l’on utilise nos schémas de chiffrement linéairement
homomorphes, nous supprimons la nécessité d’un certain nombre de preuves à divulgation
nulle de connaissance et évitons le recours à toute hypothèse interactive.

Nous concevons le premier protocole EC-DSA bipartite générique à partir de fonctions de
hachage projectives ayant des propriétés homomorphes. Une instanciation issue de l’hypothèse
HSM-CL résulte en un protocole efficace (notamment en matière de bande passante) avec une
preuve de sécurité sans perte ni hypothèse interactive. Nous fusionnons ensuite les idées sous-
jacentes à notre protocole bipartite et la construction proposée par Gennaro et al. dans [GG18]
afin d’obtenir un protocole EC-DSA à seuil entièrement configurable. Ces deux constructions
font appel à nos preuves et arguments à divulgation nulle de connaissance évoqués plus haut,
permettant d’assurer que les participants se conduisent comme prévu.

Nous comparons l’efficacité de nos protocoles aux protocoles préexistant les plus perfor-

21

RÉSUMÉ LONG EN FRANÇAIS

mants, utilisant des techniques de construction similaires et atteignant la même fonctionnalité.
Ces comparaisons montrent que, pour tous les niveaux de sécurité considérés, nos protocoles de
signature consomment nettement moins de bande passante. En matière de rapidité, bien que
nos protocoles de signature soient légèrement plus lents pour les niveaux de sécurité standard,
la tendance est inversée pour des niveaux de sécurité plus élevés (sécurité de 192-bits et plus).

Organisation de la thèse
Le reste de cette thèse est organisé comme suit. Chapitre 2 introduit les notations et prérequis
nécessaires pour comprendre la thèse. Cela comprend des connaissances techniques de base sur
les groupes de classes d’idéaux des ordres d’un corps quadratique imaginaire.

Chapitre 3 rappelle le cadre CL et explique comment il peut être instancié à partir de
groupes de classes. Nous enrichissons ensuite ce cadre en formalisant de nouvelles hypothèses
cryptographiques à partir desquelles nous construisons des fonctions de hachage projectives.
Celles-ci donnent à leur tour naissance à trois schémas de chiffrement linéairement homo-
morphes. Toujours dans le but d’améliorer le cadre, nous concevons une série de preuves et
d’arguments à divulgation nulle de connaissance adaptés à celui-ci et aux schémas de chiffre-
ment susmentionnés.

Dans le Chapitre 4 sont définies un certain nombre de nouvelles propriétés que doivent
satisfaire les fonctions de hachage projectives afin de permettre la construction de schémas de
chiffrement fonctionnel calculant le produit scalaire qui soient sûrs contre tout adversaire passif
ou actif. À partir de celles-ci nous présentons ensuite des constructions génériques, avec preuves
de sécurité, pour ce chiffrement fonctionnel. Chaque nouvelle définition et construction est
illustrée à l’aide d’exemples récurrents issus des fonctions de hachage projectives du Chapitre 3.

Dans le Chapitre 5 nous présentons notre construction générique pour EC-DSA bipartite
à base de fonctions de hachage projectives et notre protocole EC-DSA à seuil entièrement
configurable. Enfin, Chapitre 6 conclut brièvement la thèse et soulève quelques questions restées
ouvertes.

22

Chapter 1

Introduction

In a public key encryption scheme, each user has their own secret key which, as the name
suggests, is kept secret. This secret key is associated to a public key, which is made publicly
available. Anyone, using a public key, can encrypt a confidential message, and send it to the
key’s owner. Security requires that without the associated secret key, which allows to decrypt
the resulting ciphertext, no information should leak on the underlying plaintext message,
other than what may already be known without seeing the ciphertext (e.g. the language of a
communication).

In the above we used the term security quite broadly, in fact defining what secure means
is a non-trivial task in cryptography. In order to guarantee a high level of trust in the security
of cryptosystems, these must be proven secure. An early example of provable security was
introduced almost fourty years ago in the pioneering work of Goldwasser and Micali [GM84].
It relies on the principle that the security of cryptographic schemes is based on mathematically
precise assumptions. These assumptions can be general (such as the existence of one-way
functions) or specific (such as the hardness of the discrete logarithm problem in specific group
families, or integer factorisation). The security argument is a reduction, in the complexity
theory meaning, transforming any adversary against a cryptographic protocol into an algorithm
that solves the underlying mathematical problem.

1.1 Advanced Cryptography
As we have seen, public key encryption resolves the problem of securely and efficiently commu-
nicating over an insecure channel. Now clearly, due to it’s omnipresence in modern society, we
use information technology for far more than mere communication. Indeed many tasks which
often involve some form of computation over private information are performed online. It is
essential that the huge flow of information which occurs here is protected, so that no overly
curious or ill-intentioned individual can access information it should not, or in any way abuse
of its power. At the same time, if solutions to protect users hinder their experience, these
solutions will see little practical implementation.

Thus to solve many ‘real world’ problems, which go beyond communication security, ad-
vanced cryptographic primitives must be defined. Such real world problems include e.g. secure
voting systems, or allowing a computationally limited device to outsource computations to
some other device, potentially malicious, but much more computationally powerful.

These advanced cryptographic primitives must be both practical, so as to seamlessly sub-
stitute traditional insecure protocols; and provably secure, to ensure a high level of trust in
these solutions. What is more, due to ever evolving adversaries, and increasingly sensitive tasks
being performed over the internet (e.g. large transfers of cryptocurrencies) the need to identify
and mitigate single points of failure is prevalent. To illustrate this, we state two concrete ex-
amples of tasks which traditional encryption does not cater for, and specific solutions provided

23

CHAPTER 1. INTRODUCTION

by advanced cryptography.

Fine grained access to information. Consider a hospital, willing to share medical data
with researchers so as to facilitate medical innovations and discoveries, without disclosing
unnecessary information on the patients’ identities for obvious confidentiality reasons. We rea-
sonably assume that this hospital has an encrypted database containing patients’ confidential
information. If the database is encrypted using traditional encryption, the researchers – given
only the encrypted database – learn nothing about the underlying data; conversely, if the hos-
pital grants them the decryption key, they learn the whole contents of the database. This may
be far more information that what is required for their analysis. Alternatively, the hospital
itself could perform the analysis on the database, and share the results. For obvious reasons
(e.g. hospital staff are already overrun and are not trained to perform these computations)
this solution is suboptimal.

An ideal solution would be enabling researchers to perform their statistical analysis from an
encrypted database, in such a way that they only learn the output of the analysis, but nothing
else about the contents of the database. If a trusted authority (this could be the hospital)
authorises this analysis prior to giving researchers the means to run it, this solution protects
patient privacy, while providing priceless resources to biomedical research.

Functional encryption, whose general study was initiated by O’Neill in [O’N10] and inde-
pendently by Boneh et al. in [BSW11], is an advanced cryptographic primitive which emerged
from a series of refinements of public key encryption, allowing to control, given a single cipher-
text, how much of the underlying data each user can recover. Specifically, functional encryption
allows for a receiver to recover a function f(m) of the encrypted message m, without revealing
anything else about m. The primitive derives functional decryption keys skfi – associated to
specific functionalities fi – from a master secret key msk; these are delivered to the appropriate
recipients. A single ciphertext c encrypting plaintext m is made available, from which a user
possessing skfi can recover fi(m) by decrypting c with skfi .

Applied to our concrete example, the hospital can encrypt its database using a functional
encryption scheme, and make the resulting ciphertext publicly available. Then upon request of
a group of researchers, wishing to compute a function f applied to the database, the hospital
computes a functional decryption key skf associated to f which it sends back to them. This
decryption key allows them to compute the required function of the database, and in fact that
of any updated database, encrypted under the same public key.

Despite the huge attention it has received from scientific research, devising efficient func-
tional encryption schemes which support any function evaluation, and attaining a satisfying
level of security, is still an open problem. All constructions achieving such a functionality are
far from practical, and either bound the number of decryption keys the adversary can re-
quest (e.g. [SS10]), or rely on non-standard, ill-understood cryptographic assumptions (e.g.,
[GGHZ16]). Hence researchers started focussing on functional encryption restricted to the com-
putation of specific classes of functions, in the hope that such primitives could be implemented
efficiently under well understood cryptographic assumptions, while being efficient enough to
benefit concrete practical applications.

One notable example is the study of inner-product functional encryption, as first formalised
by Abdalla et al. in [ABDP15], which restricts the computed functionality to the dot product of
two vectors (one resulting from a decryption key, the other from a message). Such a restriction
not only develops our understanding of functional encryption, but also benefits diverse practical
applications, from its direct use allowing to perform linear operations over encrypted data, to
the construction of other more complex cryptosystems (cf. e.g. [ALS16, ABP+17, KY19]). In
this thesis we present generic constructions for inner-product functional encryption which can

24

CHAPTER 1. INTRODUCTION

be instantiated from a range of algorithmic assumptions, and which are efficient enough to be
used in large scale modern information systems.

Secrecy of secret keys. Let us now consider a somewhat orthogonal issue. Whether one
considers symmetric encryption, public key encryption, or in fact any cryptosystem aiming at
preserving information security, if the secrecy of the private key is compromised, then so is the
security of the whole application.

The requirement of the key being secret brings several problems. First of all, storing a
secret key in one location, be it one’s personal computer, a server or a database, reduces the
security of the cryptosystem to the difficulty of breaking into that device. This may be (and
often is) considerably easier for an attacker than breaking the actual cryptosystem. In addition,
not having a backup of the key introduces the risk of key loss if a software or hardware failure
were to occur. On the other hand, storing the key on multiple devices renders an attacker’s
task easier, as it multiplies the targets it can choose from, thereby reducing security to that
of the least secure of these devices.

One tangible example where key theft can have devastating consequences is in the context
of cryptocurrencies. A common approach to validate cryptocurrency transactions is to have
the spender authenticate its transaction. The spender does so by signing the transaction with
its secret signing key for a digital signature scheme. On account of this, a security break where
one’s signing key is stolen can result in concrete financial losses.

Secret sharing schemes were introduced in 1979 by Blakley [Bla79] and Shamir [Sha79] to
solve the problems above. A secret sharing scheme makes it possible to share a secret among
a group of people in such a way that only well-defined combinations of people can jointly
recover the secret, while no other coalition can obtain any information about the secret. A
(t, n)-threshold scheme [Sha79] is a particular case of a secret sharing scheme in which the
secret is shared between n parties in such a way that any set of more than t participants
can recover the secret, while any set of t or less participants gains no additional information.
One can further strengthen the security of these two concepts by using the broader notion of
threshold cryptography, which was introduced by the works of Boyd [Boy86], Desmedt [Des88],
and Desmedt and Frankel [DF90]. Similarly to threshold secret sharing, (t, n)-threshold cryp-
tography allows n users to share a common key in such a way that any subset of t+ 1 parties
can use this key to decrypt or sign, while any coalition of less than t can do nothing. The
key feature of this paradigm is that it allows to use the shared key without ever explicitly
reconstructing it in the clear. This means a subset of t parties have to actively participate
in the protocol whenever the secret key is used. In particular this means that an adversary
must simultaneously corrupt at least t + 1 parties (or equivalently break into t + 1 devices)
in order to perform sensitive operations. Such distributed protocols fall under the scope of
secure multi-party computation: this subfield of cryptography, which dates back to papers by
Yao [Yao82] and Goldreich et al. [GMW87], aims at creating methods for parties to jointly
compute a function over their inputs while keeping those inputs private.

We devise threshold variants of the signature scheme used to validate Bitcoin transactions:
the ellipic curve digital signature algorithm (EC-DSA). As we shall see, while for many other
signature schemes fast threshold variants have been known for decades (e.g. RSA signing
[GJKR96a] and Schnorr signatures [Sch91, SS01]) constructing efficient threshold variants of
EC-DSA has proven to be much harder.

Building advanced cryptographic systems may at first sight seem a daunting task. Indeed
the goals of such systems are much more complex – be it in terms of functionality or of security
– than those of traditional cryptography. Hence a natural approach to devising such systems is
to start from elementary building blocks. If these elementary objects are somewhat malleable,

25

CHAPTER 1. INTRODUCTION

in that one can combine and assemble them, they give us the means to realise complex function-
alities. If one can further write out a clear interface defining the security properties provided
by theses building blocks, proving the security of the resulting constructions is highly sim-
plified. Adding on the extra bonus of genericity, one can instantiate these constructions from
a wide range of cryptographic assumptions, which avoids putting all our eggs in one basket.
Indeed if we concentrate our efforts and resources on building schemes from one cryptographic
assumption, in the event the underlying problem turns out to be less hard than expected, one
could lose everything. Finally, if these constructions are carefully crafted, and their security
analysis is precise, choosing the appropriate mathematical tools to instantiate them results in
extremely flexible and efficient advanced cryptosystems.

This modular, generic and precise approach has been that of my thesis.

1.2 Projective Hash Functions
The main generic and elementary tool which we use as building block is a projective hash
function. The concept of a projective hash function was formalised by Cramer and Shoup some
twenty years ago [CS02]. They were initially introduced to generically build encryption schemes
secure against adversaries which not only eavesdrop upon encrypted communications, but also
actively attempt to gain information by running the cryptosystem in unprescribed conditions
(e.g. requesting the decryption of malformed ciphertexts). Such unexpected behaviour could
for instance cause the system to leak information on secret keys. In the context of public key
encryption, to deal with eavesdropping (also referred to as passive) adversaries, one simply
needs to ensure confidentiality of encrypted messages. To further protect against malicious
(also referred to as active) adversaries, one must also ensure ciphertext integrity.

In view of adopting a modular approach in our design of advanced cryptosystems we
build projective hash functions with homomorphic properties. A cryptosystem is said to be
homomorphic if one can publicly manipulate secret data. For instance, an encryption scheme is
linearly homomorphic if, knowing ciphertexts c1 and c2 which encrypt plaintexts m1 and m2, it
is possible to produce a new ciphertext c that will decrypt to the sum m1 +m2. Paradoxically,
though encryption schemes possessing such homomorphic properties are extremely useful for
the design of more complex advanced cryptosystems, these can not attain the maximal level of
security one could hope to get for an encryption scheme, i.e. security against active adversaries.

Returning to our projective hash functions, we also define new properties for these which
encapsulate the essential features needed for both the correctness and security of our more
complex constructions. Precisely, from the rich toolbox provided by these projective hash
functions, we devise linearly homomorphic encryption schemes, functional encryption allowing
the evaluation of linear functions and threshold EC-DSA protocols. Using similar techniques to
[CS02], we are able to secure the latter two constructions against malicious adversaries (which
deviate from the protocol).

1.3 Linearly Homomorphic Encryption and the CL Framework
As mentioned above, from projective hash functions with homomorphic properties, one can
design linearly homomorphic encryption schemes. In fact, the path which led to the writing
of this thesis did not start with projective hash functions, but rather from the observation
that one can devise provably secure advanced cryptosystems, building upon the malleability
of linearly homomorphic encryption. The first homomorphic encryption scheme (which was
also the first probabilistic encryption scheme) was put forth by Goldwasser and Micali in
[GM84], while one of the most accomplished such schemes, standardised in ISO/IEC-18033-6,

26

CHAPTER 1. INTRODUCTION

was designed by Paillier [Pai99].
This thesis grounds itself on a much more recent linearly homomorphic encryption scheme

possessing interesting and novel properties. Specifically, we build upon the framework in-
troduced by Castagnos and Laguillaumie at CT-RSA 2015 [CL15]. This framework (the CL
framework) allowed them to devise a linearly homomorphic encryption scheme which benefits
of the uncommon property of having a plaintext space of prime order q, where q can be chosen
(with some restrictions) independently of the security parameter. Furthermore, their scheme
is the first practical linearly homomorphic encryption scheme whose security relies solely on a
discrete logarithm type assumption.

Building upon the CL framework, we define new hardness assumptions from which we
build invaluable tools; in particular, we devise projective hash functions with homomorphic
properties. These abstract away the framework’s properties, thus allowing for more genericity
in our subsequent work.

We note that, when instantiating our upcomming generic constructions, the most efficient
schemes either result from our framework, or from that in which Paillier designed his cryptosys-
tem [Pai99]. As we both build upon, and compare our work to Paillier-based constructions,
we will often refer to his scheme. Moreover one may observe many similarities between the
structure of both frameworks, as they both consist of a group G (in which some computational
problem is hard) containing a subgroup F , generated by f , in which computing discrete log-
arithms can be done efficiently. In both cryptosystems one encodes plaintext messages in the
exponent of f , and masks this encoding with some group element in G. This allows to per-
form linearly homomorphic operations over encrypted data (since fm1fm2 = fm1+m2), while
allowing for efficient decryption, since one can efficiently recover m given fm.

1.4 Instantiating the CL Framework from Class Groups
The framework developed throughout this thesis has a key feature: it relies on the existence
of a group G in which some algorithmic problem is assumed to be hard (the hardness of
which underlies security of resulting cryptographic constructions), together with a prime order
subgroup F of G in which computing discrete logarithms is easy. In order to realise this
uncommon property, we use the particular algebraic structure of class groups of imaginary
quadratic fields, which possess some specificities that seem hard to find in other groups.

Imaginary quadratic fields were proposed as a setting for public-key cryptosystems in the
late 1980s by Buchmann and Williams [BW88]. They proposed an adaptation of the Diffie-
Hellman key exchange in imaginary quadratic fields and briefly described an adaptation of
the Elgamal cryptosystem in the same setting. Many cryptosystems relying on this algebraic
object have since been designed, for which efficient implementations have also been discussed
in e.g. [JW09].

Notably, the interest in class group cryptography declined after critical attacks by Castag-
nos et al. [CL09, CJLN09] on the NICE cryptosystem [HPT99, PT00] and its real variant
[JSW08]. However these attacks do not apply to the CL framework since they recover the
secret key by exposing the factorisation of the discriminant of the field, whereas in our case,
the factorisation of the discriminant is public.

This being said, class group cryptography is seeing renewed interest as it allows versatile
and efficient solutions such as accumulators without trusted setup [Lip12], encryption switch-
ing protocols [CIL17], verifiable delay functions [BBBF18, Wes18], succinct non-interactive
zero-knowledge arguments of knowledge without trusted setup [BFS20], and, as we shall see
throughout this thesis, inner product functional encryption and threshold EC-DSA signatures.

Regarding underlying assumptions, the security of cryptosystems arising from the CL

27

CHAPTER 1. INTRODUCTION

framework is related to the hardness of computing class numbers. The current best known
algorithms to solve this problem (cf. [BJS10]) have a higher asymptotic complexity than those
solving the factorisation problem (or the discrete logarithm problem in finite fields); this allows
to use shorter keys in cryptosystems arising from our framework than for schemes relying on
the hardness of factorisation (such as Paillier’s encryption scheme). In addition, arithmetic
operations in class groups are quasi linear using fast arithmetic, both these facts contribute to
the efficiency of our protocols.

1.5 Contributions
We note that though most of the presented results have been published or are currently under
review, for clarity of exposition we have restructured our results to show them in a more
modular and logical order, rather than following the chronological order of our publications,
or grouping chapters per publication. The goal is of course to benefit ease of readability.

The results discussed below have been mainly taken from a current submission (co-authored
with Guilhem Castagnos and Fabien Laguillaumie), and the following papers: [CLT18a] pre-
sented at Asiacrypt 2018 (co-authored with Guilhem Castagnos and Fabien Laguillaumie),
[CCL+19] presented at Crypto 2019 and [CCL+20] presented at PKC 2020 (both co-authored
with Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie and Federico Savasta).

1.5.1 Projective Hash Functions from the CL Framework

In this thesis we formalise new cryptographic assumptions in the CL framework. We provide ar-
guments backing their hardness when these are instantiated from class groups of an imaginary
quadratic field. We then formally define projective hash functions, and the properties required
for both correctness and security of our constructions. We illustrate all new definitions and
properties with three running examples. The first arises from the traditional decision Diffie-
Hellman assumption in finite fields, thereby providing an instantiation with which most readers
will be familiar. The other two running examples arise from the aforementioned assumptions
we defined, called respectively HSM-CL and DDH-f .

As projective hash functions are used as building blocks for our subsequent constructions,
all our constructions can be instantiated by our new assumptions, and hence from class group
cryptography. We note that all our definitions cater for the fact the groups we work in may be
of unknown order. In fact this is a feature which is inherent to the CL framework. As a first
and simple application of these projective hash functions, we present linearly homomorphic
encryption schemes, which can be seen as a slight adaptation of the Cramer-Shoup generic
construction [CS02].

1.5.2 Zero-knowledge Proofs and Arguments for the CL Framework

For our distributed signature protocols, as multiple parties are jointly performing computa-
tions, we need to enforce parties behave correctly and follow protocol. Of course, when proving
they behaved correctly, parties should not unwillingly leak information on their private inputs.
A zero-knowledge proof is an interactive protocol between a prover and a verifier, which aims
at demonstrating that some statement is true without revealing anything else but the truth of
this statement. While a zero-knowledge proof convinces the verifier that statistically this truth
must hold, zero-knowledge arguments convince the verifier under computational assumptions.
We provide zero-knowledge proofs and arguments for the CL framework, e.g. proving that a
ciphertext for one of the aforementioned encryption schemes is honestly computed.

28

CHAPTER 1. INTRODUCTION

Our setting contrasts to groups of known order where one can efficiently recognise group
elements. Indeed we deal with a cyclic subgroup Gq := 〈gq〉 of some larger group Ĝ, where gq is
of unknown order, and elements of Gq are not efficiently recognisable. One can only efficiently
check that elements live in Ĝ. It is crucial to take this into account in all of our protocols
for security to hold against malicious adversaries. Since our encryption schemes follow an
Elgamal like structure, we have at our disposal a whole arsenal of zero-knowledge proofs and
arguments for Elgamal ciphertexts and for proving knowledge of discrete logarithms in groups
of known order (e.g., [Sch90, CP93]) which we can build upon. Further inspired by D̊amgard
and Fujisaki’s work on arguments of knowledge [DF02], and Girault, Poupard and Stern’s work
on proofs which statistically hide secret inputs [GPS06], both of which also consider groups of
unknown order, we devise various techniques to overcome the aforementioned complications,
with varying trade-offs between security and efficiency.

1.5.3 Tighter Security and Improved Efficiency for Functional Encryption

We then devise inner product functional encryption schemes, which are secure against passive,
and active adversaries, from projective hash functions. We define new properties for projective
hash functions, to handle the fact that, in contrast to standard encryption, messages are
now vectors, and adversaries have access to additional information on the scheme’s secret
parameters.

These new properties capture the essential requirements to build inner-product functional
encryption schemes. To isolate these specific properties, we break down the proof techniques
used by Agrawal et al in [ALS16] in which they devise inner-product functional encryption
schemes secure against passive adversaries from specific assumptions. This decomposition al-
lows us to identify the essential steps in their proofs, which will benefit our modular and
generic approach while preserving efficiency.

We then provide generic constructions for inner-product functional encryption from projec-
tive hash functions possessing such properties. Our first construction is proven secure against
passive adversaries, i.e. when ran in expected conditions, the scheme leaks no further infor-
mation than that intended. When we instantiate this construction from the decision Diffie
Hellman assumption, or from the decisional composite residuosity assumption, we retrieve the
constructions of [ALS16,ABDP16], with the same security bound; and when instantiated from
our assumptions in the CL framework, we obtain new constructions. Instantiations from DCR
and from the CL framework yield the most efficient such schemes to date, and compute inner
products in Z.

Digressing slightly from the generic construction, we also build functional encryption
schemes computing inner products modulo a prime from the CL framework, and again ob-
tain the most efficient such schemes to date; we compare the speed as well as the sizes of
ciphertexts and secret keys of our best performing scheme to those of [ALS16] so as to illus-
trate the concrete improvements we achieve.

The first generic construction, secure against passive adversaries, is in some sense a stepping
stone to build inner-product functional encryption secure against active adversaries. Indeed we
extend the aforementioned generic construction for security to hold against active adversaries,
which may deviate arbitrarily from the protocol. The construction can be instantiated with all
our running examples. We build upon the construction of Benhamouda et al. [BBL17], which
attained the same security goals and functionalities. However we hugely improve the security
reduction, this justifies using much shorter secret keys and ciphertexts, while maintaining an
equivalent level of security. Our work is the first to demonstrate that inner product functional
encryption which achieves security against active adversaries is usable in practice. Indeed,

29

CHAPTER 1. INTRODUCTION

instantiations of our generic construction yield schemes which are efficient enough to be used
in large-scale modern information systems. To illustrate this we provide a detailed theoretical
comparison of the efficiency of our inner-product functional encryption schemes secure against
active adversaries (instantiated from various assumptions) to those of [BBL17].

1.5.4 Distributing the Elliptic Curve Digital Signature Algorithm

In order to devise threshold variants of the EC-DSA signature algorithm, various solutions have
been put forth which rely on the linearly homomorphic properties of the Paillier cryptosystem.
Some of these are in the two party setting (i.e. t = 1 and n = 2), this was first addressed by
Mackenzie and Reiter in [MR01], and then much more efficiently by Lindell in [Lin17a]. While
recent works also consider the full threshold setting (any t < n), starting with Gennaro,
Goldfeder and Narayanan’s protocol in [GGN16].

We demonstrate that despite the widespread use of Paillier’s encryption scheme to build
threshold EC-DSA, this encryption scheme is in fact not adapted for the task. Indeed, for
reasons which will be discussed later in this thesis, this choice entails an overhead in commu-
nication cost, and, in some cases, the introduction of a non standard interactive assumption
on the Paillier cryptosystem so as to prove security. Conversely, using the linearly homomor-
phic encryption schemes resulting from our projective hash functions in the CL framework, we
remove the need for a number of zero-knowledge proofs and need not resort to any interactive
assumptions.

We devise the first generic two party EC-DSA protocol from projective hash functions with
homomorphic properties. When instantiated from our HSM-CL based projective hash function,
this construction yields an efficient protocol (especially in terms of bandwidth) with a tight
security proof and without any interactive assumptions. We then merge the ideas underlying
our two party protocol and the construction proposed by Gennaro et al. in [GG18] to obtain
a full threshold EC-DSA protocol. Both constructions make use of our zero-knowledge proofs
and arguments in the CL framework, to ensure parties behave correctly.

We compare the speed and communication costs of our protocols to best performing pre-
existing protocols using similar construction techniques and which achieve the same func-
tionality. Our comparisons show that for all considered security levels our signing protocols
significantly reduce the bandwidth consumption. In terms of timings, though for standard
levels of security our signing protocols are slightly slower, for higher levels of security (192-bit
security and beyond) the trend is inverted.

1.6 Road Map
The rest of this thesis is organised as follows. In Chapter 2, we introduce necessary notations
and preliminaries to understand the thesis. This includes basic technical background on ideal
class groups of orders of an imaginary quadratic field.

In Chapter 3, we recall the CL framework and explain how it can be instantiated from
class groups. We then enrich the framework by formalising new hardness assumptions from
which we build families of projective hash functions. These in turn give rise to three linearly
homomorphic encryption schemes. Still in view of enhancing the framework, we devise a range
of zero-knowledge proofs and arguments tailored to the framework and to the aforementioned
encryption schemes.

In Chapter 4 we define a number of new properties required of projective hash functions
in order to build inner product functional encryption schemes which are secure against both
passive and active adversaries. Then we present our generic constructions and proofs of their

30

CHAPTER 1. INTRODUCTION

security. All new definitions and constructions are illustrated with running examples from the
projective hash functions of Chapter 3.

In Chapter 5 we present our generic construction for two party EC-DSA from projective
hash functions and our full threshold EC-DSA protocol.

Finally Chapter 6 concludes the thesis and raises some open questions.

31

CHAPTER 1. INTRODUCTION

32

Chapter 2

Preliminaries

In this chapter, we introduce the notations and basic notions that will be used throughout
this thesis. In Sections 2.2 and 2.3 we introduce the main notions related to provable security,
the different types of adversaries we consider, and, at a high level, the models in which we
prove security. We do not provide formal definitions regarding these notions, but only enough
intuition and information for the reader to understand our discussions and motivations in
upcoming chapters. If formal definitions on these topics are required later in the thesis, they
will be provided in the relevant chapter.

In Section 2.4 we recall definitions for discrete logarithm type assumptions and the deci-
sional composite residuosity assumption. These are standard computational assumptions which
will be used throughout our work. In Section 2.5 we give formal definitions for basic primitives
which we either build, or build upon. Of particular interest to this thesis is the definition of
linearly homomorphic public key encryption, as in Section 3.5 we build linearly homomorphic
encryption schemes from the CL framework (defined in Section 3.1). We also recall Paillier’s
linearly homomoprhic cryptosystem [Pai99], as it will often be referred to throughout this
thesis.

As our instantiation for the CL framework, detailed in Section 3.1.2, arises from ideal class
groups of orders of an imaginary quadratic field, in Section 2.6 we give some background on
these mathematical objects. Though this background is not exhaustive, we provide pointers
for further reading, and present sufficient material to back our instantiation.

As we will often be working in groups of unknown order, in Section 2.7 we explain how to
instantiate distributions, from which exponents will be sampled, so as to induce distributions
close to uniform in these groups. We provide useful properties regarding such distributions,
and – since we often instantiate these distributions with discrete Gaussians – we give minimal
yet essential background on discrete Gaussian distributions.

Finally, in Section 2.8, we define zero knowledge proofs and arguments of knowledge as we
will devise such protocols for the CL framework in Sections 3.6 and 3.7.

2.1 Notations
We denote sets by upper-case letters, matrices by bold upper-case letters, vectors by bold
lower-case letters (which are by default column vectors), and for a ∈ A`, aT = (a1, . . . , a`).
For an integer x, we denote its size by |x|, and by [x] the set of integers {1, . . . , x}. The
coordinate-wise product of vectors x and y in A` is denoted:

x� y := (x1y1, . . . , x`y`)T ∈ A`.

Given a ring R, the dot product of x ∈ R` and y ∈ R` is denoted:

〈x,y〉 :=
∑̀
i=1

xiyi ∈ R.

33

CHAPTER 2. PRELIMINARIES

Throughout this thesis we will abuse terminology and refer to the dot product as the inner
product1. If f : A 7→ B is a function defined over A with co-domain B, and a ∈ A`, we denote
f(a) ∈ B` the vector satisfying f(a)T := (f(a1), . . . , f(a`)). For an element g of a group G,
〈g〉 is the subgroup generated by g. If R is either the ring Z or Z/qZ for some prime q, for
m ∈ R` we denote m⊥ the subset of R` defined as m⊥ := {k ∈ R` | 〈m,k〉 = 0}.

We denote U(B) the uniform distribution over the finite set B. For a distribution D, we
write d←↩ D to refer to d being sampled from D and b←↩ B if b is sampled uniformly in the
set B.

For any function in parameter λ, we denote by f(λ) = poly(λ) the fact f is a polynomial.
We denote by f(λ) = negl(λ), if for all polynomial P , f is asymptotically dominated by 1/P .
An algorithm is said to be efficient or polynomial time (PT) if, on input a string of length
λ, the number of steps of the algorithm is upper bounded by poly(λ). If the algorithm is
further probabilistic, it is said to be probabilistic polynomial time (PPT). We say that a set
(or a group) E is efficiently recognisable if its elements are uniquely encoded as bit strings of
length bounded by poly(λ) (λ is the security parameter), and there exists a PT algorithm that
determines if a bit string is a valid encoding of an element of E.

The L-notation, often called sub-exponential function, is useful to compare the asymptotic
complexity of algorithms solving problems underlying cryptographic schemes. For a positive
integer x, the L-notation is defined as:

Lx[α, c] = exp
(
c(log(x))α(log(log(x)))1−α),

with 0 6 α 6 1 and c > 0. The parameter α measures the gap between polynomial time (α = 0)
and exponential time (α = 1); we may at times omit c, which is an explicitly computable
constant, and simply write Lx[α].

Let X and Y be random variables taking values in a finite set Ω. The statistical distance
between X and Y is defined as:

∆(X,Y) def=
1
2
·
∑
ω∈Ω

|Pr[X = ω]− Pr[Y = ω]| = max
Ω′⊂Ω

|Pr[X ∈ Ω′]− Pr[Y ∈ Ω′]|.

We shall say that X and Y are δ-close if ∆(X,Y) ¬ δ.

Statistical and computational indistinguishability. Let {Aλ}λ∈N and {Bλ}λ∈N be en-
sembles of distributions over some set Ω, indexed by the security parameter λ (in the sequel
the security parameter is often omitted for the sake of simplicity). Let A be an algorithm,
called an adversary. The advantage of A in distinguishing {Aλ}λ∈N and {Bλ}λ∈N is defined
as:

AdvA(λ) def=
∣∣∣∣ Pr
x←↩Aλ

[A(x) = 1]− Pr
x←↩Bλ

[A(x) = 1]
∣∣∣∣

The distributions A and B are computationally indistinguishable if for any (probabilistic)
polynomial time A, it holds that AdvA(λ) = negl(λ). They are statistically indistinguishable
if this is true for any (not necessarily polynomial time) A.

2.2 Secure Multi-Party Computation (MPC)
In Chapter 5 we build distributed signatures, which allow multiple parties to collaboratively
compute digital signatures. These are a case of secure multi-party computation (MPC).

1This is due to the fact inner product functional encryption schemes (defined in Section 4.1), despite their
misleading name, compute the dot product of two vectors.

34

CHAPTER 2. PRELIMINARIES

Notation. In an interactive protocol IP, between parties P1, . . . , Pn for some integer n > 1,
we denote:

IP〈x1; . . . ;xn〉 → 〈y1; . . . ; yn〉

the joint execution of parties {Pi}i∈[n] in the protocol, with respective inputs xi, and where
Pi’s private output at the end of the execution is yi. If all parties use the same input x (resp.
receive the same output y) we write IP〈x〉 → 〈y1; . . . ; yn〉 (resp. IP〈x1; . . . ;xn〉 → 〈y〉).

Multi-party protocol [GMW87]. Let {0, 1}∗ denote the set of arbitrary length (but finite)
bit strings. Consider a function F : ({0, 1}∗)n 7→ ({0, 1}∗)n, and n parties P1, . . . , Pn with
respective secret inputs x1, . . . , xn. Let F (x1, . . . , xn) 7→ (y1, . . . , yn). The goal of each Pi is to
evaluate F on the inputs x1, . . . , xn receiving the i-th output without revealing its own input
to the other parties. A multi-party protocol Π executed by P1, . . . , Pn securely implements F
if the following conditions hold:

Completeness: if all P1, . . . , Pn honestly follow the protocol then

Π〈x1; . . . ;xn〉 → 〈y1; . . . ; yn〉.

Privacy: any party behaving dishonestly in the protocol does not gain any information
about the private inputs/outputs of the other parties (except what can be inferred by the
output of the protocol and its own private input).

One may also require that other security properties be guaranteed, namely:

Independence of inputs: parties cannot choose their inputs as a function of other parties’
inputs.

Fairness: all parties learn the output or no one does.

Robustness: output delivery is guaranteed for honest parties.

Secret Sharing

For many secure multi-party protocols, one needs to distribute a secret amongst the parties,
each of whom is granted a share of the secret. The secret can be reconstructed only when a
sufficient number of shares are combined together; individual shares should leak no information
on the reconstructed secret. We here define the notion of threshold secret sharing, which allows
to perform the aforementioned task, and verifiable secret sharing, which additionally allows to
share the secret in a verifiable way. We will use Feldman’s verifiable secret sharing for one of
our distributed signature protocols of Chapter 5.

Threshold secret sharing. A (t, n) threshold secret sharing scheme allows to divide a secret
s into shares s1, . . . , sn, amongst a group of n parties, in such a way that knowledge of any
t+ 1 or more shares allows to compute s; whereas knowledge of any t or less shares reveals no
information about s.

Feldman verifiable secret sharing. A verifiable secret sharing (VSS) protocol allows to
share a secret between n parties P1, . . . , Pn in a verifiable way. Feldmann’s VSS [Fel87] relies
on Shamir’s secret sharing scheme [Sha79], but gives additional information allowing to check
the sharing is done correctly.

Let G be a group of prime order q, g a generator of G, and suppose that one of the parties,
that we call P , wants to share a secret s ∈ Z/qZ with the others. To share the secret, P does
the following steps:

35

CHAPTER 2. PRELIMINARIES

1. P generates a random polynomial Q ∈ Z/qZ[x] of degree t and with s as free term. We
denote:

Q(x) = atx
t + at−1x

t−1 + . . .+ a2x
2 + a1x+ s mod q,

where s = Q(0) mod q. The shares of s are si = Q(i) mod q, for 1 6 i 6 n.

2. P sends si to Pi, for 1 6 i 6 n.

3. P publishes auxiliary information {vi = gai ∈ G}i∈[t] and v0 = gs ∈ G allowing other
players to check the shares are consistent and define a unique secret.

Each Pi, for 1 6 i 6 n, can check its share is consistent by verifying if the following condition
holds:

gsi =
t∏

j=0

vi
j

j ∈ G.

If one of the checks fails, then the protocol terminates. Furthermore, the only information that
this VSS leaks about the secret s is v0 = gs.

2.3 Provable Security
We here provide a brief introduction to the setting in which we do our work. The goal of
provable security is to provide a reduction from the security of the cryptosystem to some
well-studied problem (the underlying problem). Alone the reduction says nothing about the
security of the cryptosystem. But if one assumes there is no efficient algorithm solving the
underlying problem with significant probability, the reduction guarantees some minimal cost
for breaking the cryptosystem. In this section we explain what it means for an adversary to
break a cryptosystem. We describe the considered adversaries, what kind of attacks we allow,
and the different models in which we obtain our security proofs.

2.3.1 Adversary Model

Computational power. We distinguish between information and knowledge (following Gol-
dreich [Gol01]). One has information about a value if it can be computed given unbounded
computational resources. One has knowledge about a value if it can be computed given bounded
computational resources. A computationally (un)bounded adversary is an adversary with
(un)bounded computational resources. Unbounded adversaries can obtain any information
fixed by the cryptosystem.

Active vs. Passive Adversaries. Passive adversaries attempt to obtain confidential infor-
mation while running the cryptographic protocol as expected. This corresponds, for example,
to a situation where the protocol is executed by honest parties, and the adversary watches
their communications, but does not interfere. Security against passive adversaries does not
however capture the scenario where an adversary coerces parties into running the protocol in
unprescribed conditions. Such executions could leak further information on the secret param-
eters of the scheme, thereby compromising security. Such adversaries – which deviate from the
protocol arbitrarily – are said to be active. Security against active adversaries is obviously the
most desirable security that can be achieved, but it is also harder to realise.

In the context of public key encryption. Security against passive adversaries for public
key encryption is called security against chosen plaintext attacks, formally defined in Sec-
tion 2.5.1. This is because in a public key cryptosystem, the adversary knows the public key

36

CHAPTER 2. PRELIMINARIES

by definition. Consequently, any adversary can encrypt messages of its choice with the given
public key. On the other hand, an active adversary may somehow convince the decryptor to
run the decryption protocol on values which were not output by the encryption protocol, in the
hope that, when ran on unexpected values, the algorithm leaks further information than the
schemes’ public parameters. For a public key encryption scheme, this translates as giving the
adversary the output of the decryption algorithm ran with input ciphertexts of its choice (po-
tentially malformed). The adversary is also given a challenge ciphertext, for which it can not
request the decryption, and must determine if it encrypts a fixed value, or random garbage.
This explains why, for public key encryption schemes, security against active adversaries is
referred to as security against chosen ciphertext attacks.

In the context of multi-party computation [GMW87]. Secure multi-party computation
aims at protecting the privacy of data even when a subset of the parties has been corrupted
by an adversary. Here passive corruption refers to adversaries that will only get access to the
view of the corrupted parties. This corresponds to a situation where the computation has been
performed by honest parties, and the transcript of the computation (which has been recorded
and stored by the parties) is later leaked through an adversarial breakthrough (say, a hack
of a party’s computer). Security with respect to passive corruption (also known as security
against honest-but-curious adversaries, or semi-honest security) ensures that this transcript
does not reveal unintended confidential information. On the other hand an active adversary is
given full control of the parties it corrupts, and can arbitrarily modify their behaviour. This
corresponds to a situation where some of the parties actively cheat during the protocol, in
an attempt to gain information, or to alter the outcome of the protocol. This model is also
known as security against malicious adversaries, or malicious security. Malicious adversaries
for multi-party computation come in various flavours:

• Adaptive/Static: Adaptive adversaries decide which parties they corrupt throughout
the protocol execution in an adaptive way (i.e. depending upon the transcript and the
state of the parties corrupted so far). Static adversaries declare which parties are cor-
rupted before the protocol execution starts.

• Sequential/Concurrent Composability [GO94]: One can require that the security
of the protocol holds even when a dishonest party executes several instances of the same
protocol sequentially (meaning that each execution concludes before the next execution
begins). In this case we say that the protocol securely realises a functionality under se-
quential composition. Similarly, if security of the protocol holds even when a dishonest
party executes several instances of the same protocol (resp. different protocols) con-
currently, we say the protocol securely realises a functionality under concurrent (resp.
general concurrent) composition.

2.3.2 Security Definitions

There are two main ways of defining security: the game-based definition and the simulation-
based definition. The latter was born with the notion of semantic security for public key
encryption [GM84], and is also sometimes called the real/ideal world paradigm.

Game-based definition

The security of a cryptographic algorithm is phrased as a game (or experiment) played be-
tween an adversary A and a hypothetical entity called the challenger C. Both A and C are
probabilistic processes that communicate with each other, and so the game is modelled as a

37

CHAPTER 2. PRELIMINARIES

probability space. Typically, the definition of security is tied to some particular event S. In
this context, security means that for any PT adversary, the probability that event S occurs is
negligibly close to some specified target value (either 0, 1/2, or the probability of some event
in another game in which the same adversary is interacting with a different challenger).

Simulation-based definition

In the simulation based model one imagines what properties one would have in an ideal world:
a protocol in the ideal world is called an ideal functionality, and is secure by definition. Then
if a real world (constructed) protocol Π has similar properties to the ideal functionality FΠ

then it is considered secure. In this case one says that Π securely implements FΠ.
Security proofs for such definitions work by constructing a simulator that resides in the

ideal world, which generates a view for the adversary in the real world. This simulated view
must be computationally indistinguishable from the adversary’s real view. The simulation-
based proof technique is particularly useful for arguing security of multi-party computation
protocols, as explained in Lindell’s tutorial [Lin17b].

F-hybrid model. We note that, in the simulation based model, proving protocols secure
under composition2 (cf. Section 2.3.1) is particularly useful for writing proofs of security.
Specifically, assume one has proven that a protocol π securely implements some ideal func-
tionality Fπ, and that security holds under the considered notion of composition. Then when
building a more complex protocol Π which needs to use this functionality as a subroutine, one
can prove the security of Π using as subroutine the ideal functionality Fπ, while in practice Π
would be implemented using π. This allows for much simpler and modular proofs.

This way of designing protocols using calls to ideal functionalities (as sub-protocols), and
analysing security in this partially ideal setting, is called the hybrid model. Specifically in the
F-hybrid model, parties can communicate as usual and in addition have ideal access to copies
of the functionality F. According to the considered composability model, parties may access
copies of F sequentially, in parallel, or arbitrarily. This makes protocol design and analysis
significantly more simple. Thus, composition theorems are one of the most important tools
used to write simulation-based proofs of security.

Universal composability. A particularly interesting framework illustrating the above is that
of universal composability (UC), introduced by Canetti in [Can01]. Canetti demonstrates that
if a protocol Π securely implements an ideal functionality FΠ in the UC framework, then Π
securely realises FΠ under general concurrent composition (cf. Section 2.3.1). In particular this
means the protocol is secure in realistic settings where a protocol session may run concurrently
with other protocols, thereby guaranteeing security in arbitrary protocol environments. This
implies that a secure protocol for some task remains secure even if it is running in an arbitrary
and unknown multi-party, multi-execution environment.

In particular, the following universal composition theorem is proven in [Can01]. Consider
a protocol ΠF that operates in the F-hybrid model, i.e. parties communicate as usual and
also have ideal access to an unbounded number of copies of the functionality F. Let π be a
protocol that securely realises F in the UC framework, and let Ππ be identical to ΠF, only
the interaction with each copy of F is replaced with an interaction with a separate instance
of π. Then Ππ and ΠF have essentially the same input/output behaviour. In particular, if ΠF

securely realises some functionality F̃ in the F-hybrid model then Ππ securely realises F̃ in
the standard model (i.e., without access to any functionality).

2Be it sequential, concurrent, or general concurrent composability.

38

CHAPTER 2. PRELIMINARIES

In the context of public key encryption

For traditional public key encryption the game based and simulation based security definitions
were shown to be equivalent [GM84] in the sense that a public key encryption scheme meets the
indistinguishability notion of security in the game based approach if and only if it is secure in
the real/ideal paradigm, i.e. semantically secure (the definition of semantic security for public
key encryption compares what can be learned by an adversary who receives a real ciphertext
to what can be learned by an adversary who receives nothing).

We note that this is not the case however, for most cryptographic primitives. In particular,
we shall see in Section 4.6.2 that both definitions are not equivalent for functional encryption.

2.4 Common Problems
In this section, we recall several problems that are common in cryptography and that are
generally assumed to be hard. These will appear throughout this thesis, along with new cryp-
tographic assumptions, which we introduce in Section 3.2, arising from the CL framework.

2.4.1 Discrete Logarithm Problems

We here describe two problems, both require a PPT algorithm group generator GenDL which on
input 1λ returns a description (G, q, g) of a multiplicative cyclic group G of order q, generated
by g.

The Discrete Logarithm Problem

The discrete logarithm (DL) problem is key to auxiliary structures we use, e.g. when building
distributed versions of the EC-DSA signature scheme, computing discrete logarithms in the
considered elliptic curve group must be hard.

Definition 2.1. Let λ be a positive integer. Let A be an adversary for the DL problem, its
advantage is defined as:

AdvdlA(λ) def= Pr
[
X = gx

∗
: (G, g, q)← GenDL(1λ), x←↩ U(Z/qZ),

X ← gx, x? ←A(G, g, q,X)
]

The DL problem is δdl-hard for GenDL if for all PPT algorithm A, AdvdlA(λ) 6 δdl(λ). We say
the DL assumption holds for GenDL (or the DL problem is hard for GenDL), if the DL problem
is δdl-hard for GenDL and δdl(λ) = negl(λ).

In the generic group model3, Shoup [Sho97] showed that any generic algorithm solving the
DL problem must perform Ω(

√
p) group operations, where p is the largest prime dividing the

order of the group. Generic algorithms are the best ones known for the DL problem on elliptic
curves. These algorithms are hence exponential in the size of the group. However in finite fields
there exist algorithms with sub-exponential complexity Lq[1/3] solving the DL problem in a
field with q elements.

3In generic groups it is not possible to exploit any special properties of the encodings and group elements
can only be operated on using an oracle that provides access to the group operations.

39

CHAPTER 2. PRELIMINARIES

The Decision Diffie-Hellman Problem

Since most readers are familiar with the Decision Diffie-Hellman (DDH) problem, the generic
definitions and properties we introduce in Chapters 3 and 4 will be illustrated with running
examples based on this problem.

Definition 2.2. Let λ be a positive integer. Let A be an adversary for the DDH problem, its
advantage is defined as:

AdvddhA (λ) def=
∣∣∣∣Pr
[
b = b? : (G, g, q)← GenDL(1λ), α, β, γ ←↩ U(Z/qZ), X ← gα, Y ← gβ,

b←↩ {0, 1}, Z0 ← gαβ, Z1 ← gγ , b? ←A(G, g, q,X, Y, Zb)
]
− 1/2

∣∣∣∣
The DDH problem is δddh-hard for GenDL if for all PPT algorithm A, AdvddhA (λ) 6 δddh(λ).
We say the DDH assumption holds for GenDL (or the DDH problem is hard for GenDL), if the
DDH problem is δddh-hard for GenDL and δddh(λ) = negl(λ).

2.4.2 The Decisional Composite Residuosity Problem

The Decisional Composite Residuosity (DCR) problem was introduced by Paillier, and under-
lies his linearly homomorphic public key encryption in [Pai99]. Much of our work improves
cryptosystems based either on the Paillier cryptosystem, or directly on the DCR assumption.
In order to compare our work to pre-existing protocols, we recall the definition of this problem.
In Section 2.5.2 we also recall the Paillier cryptosystem.

Let GenRSA be a PPT algorithm which on input 1λ returns a description (N, (P,Q)) of
an RSA group of order N = PQ such that the best algorithm for factoring N takes time 2λ.
Essentially, the problem is to distinguish an N -th residue rN mod N2, where r ←↩ (Z/NZ)∗,
from a random element of (Z/N2Z)∗.

Definition 2.3. Let λ be a positive integer. Let A be an adversary for the DCR problem, its
advantage is defined as:

AdvdcrA (λ) def=
∣∣∣∣Pr
[
b = b? : (N, (P,Q))← GenRSA(1λ), Y ←↩ (Z/N2Z)∗,

b←↩ {0, 1}, Z ← Y Nb
mod N2, b? ←A(N,Z)

]
− 1/2

∣∣∣∣
The DCR problem is δdcr-hard for GenRSA if for all PPT algorithm A, AdvdcrA (λ) 6 δdcr(λ). We
say the DCR assumption holds for GenRSA (or the DCR problem is hard for GenRSA), if the
DCR problem is δdcr-hard for GenRSA and δdcr(λ) = negl(λ).

The only known attacks against the DCR problem require factoring N . Hence the hardness
of this problem relies on the hardness of factoring large integers. Best known algorithms for
this problem use the general number field sieve algorithm which has a complexity in LN [1/3].

2.5 Basic Cryptographic Primitives
We here provide definitions of standard cryptographic primitives for which we either provide
constructions in the upcoming chapters, or which we use as underlying building blocks.

40

CHAPTER 2. PRELIMINARIES

2.5.1 Public Key Encryption

Symmetric or secret-key encryption enables two users, in possession of a common secret key
sk, to communicate confidentially. Each user can encrypt a message using sk, send the result-
ing ciphertext to the other user, who decrypts using the same key sk, so as to recover the
original message. The ciphertext alone (without sk) should leak no information on the original
message. Bothersome aspects here are that users need to exchange the common secret key
before communicating confidential information, and for each user with whom one wants to
communicate, one needs to set up and store a secret key.

Public-key encryption schemes overcome these shortcomings. Each user has a public key,
which is made available publicly to all other users, and a secret key which is kept secret.
Anyone can encrypt a message for a given user, using their public key, while only the secret
key associated to that public key will decrypt the ciphertext.

In this thesis we build public key encryption schemes which further allow to publicly ma-
nipulate private data, i.e. given a number of ciphertexts and the public key used for encryption,
one can compute a new ciphertext encrypting a linear combination of the original messages.
We first provide the definition of a public key encryption scheme, and the standard definition
for security against passive adversaries.

Definition 2.4 (Public key encryption scheme). Let λ be a positive integer. A public key
encryption (PKE) scheme with plaintext space M, and ciphertext space C, is a tuple of
algorithms (Setup,KeyGen, Enc,Dec) with the following specifications:

• Setup(1λ) is a PPT algorithm which on input a security parameter 1λ, outputs public
parameters pp for the encryption scheme.

• KeyGen(pp) is a PPT algorithm which on input public parameters pp, outputs a public
encryption key pk and a secret decryption key sk;

• Enc(pp, pk,m) is a PPT algorithm which on input parameters pp, a public key pk and a
message m ∈M, outputs a ciphertext c ∈ C. To specify the random coins r used by this
algorithm, we denote Enc(pp, pk,m; r).

• Dec(pp, sk, c) is a deterministic polynomial time (DPT) algorithm which on input public
parameters pp, a secret key sk and a ciphertext c, outputs m ∈M ∪ {⊥}, where ⊥ is a
special rejection symbol.

Correctness requires that for all λ ∈ N, any pp ← Setup(1λ), all (pk, sk) ← KeyGen(pp),
and all messages m, if c ← Enc(pp, pk,m), with overwhelming probability it holds that m =
Dec(pp, sk, c).

Remark. In order to avoid heavy notation, as public parameters pp are usually obvious from
the context we sometimes omit the explicit description of the Setup algorithm. In this case the
input pp to algorithms KeyGen, Enc and Dec is not written explicitly and we run KeyGen on
input 1λ.

We next define the standard security experiment against passive adversaries for PKE. We
use the game based security model to formalise this notion, though as noted at the end of
Section 2.3.2, game based security is equivalent to simulation based security for public key
encryption.

The experiment Expind-cpaΠ,A . Let Π := (KeyGen,Enc,Dec) be a PKE scheme with plaintext
space M, and ciphertext space C, and let A be a PPT adversary. For each λ ∈ N we denote

41

CHAPTER 2. PRELIMINARIES

by Expind-cpaΠ,A (λ) the random variable that is defined via the following experiment involving the
scheme Π, the adversary A, and a challenger:

1. Setup phase: the challenger samples (pk, sk)← KeyGen(1λ) and β ←↩ {0, 1}.

2. Challenge phase: A on input (1λ, pk) outputs (m0,m1) ∈M×M, then the challenger
computes c∗ ← Enc(pk,mβ) and sends c∗ to A.

3. Output phase: A outputs β′. The output of the experiment is 1 if and only if β = β′.

Definition 2.5. A PKE scheme Π with plaintext space M, and ciphertext space C is indistin-
guishable under adaptive chosen plaintext attacks (ind-cpa-secure) if for any PPT adversary
A, and λ ∈ N,

Advind-cpaΠ,A (λ) def=
∣∣∣Pr

[
Expind-cpaΠ,A = 1

]
− 1

2

∣∣∣ = negl(λ).

2.5.2 Linearly Homomorphic Public Key Encryption

A PKE scheme is said to be linearly homomorphic if performing operations on ciphertexts
translates into linear operations being performed on the underlying plaintexts. Such schemes
thus allow to publicly manipulate confidential data. This malleability is paramount to many
applications; take for instance e-voting: given ciphertexts each encrypting one ballot (consisting
in 0 or 1 in the case of a ‘yes’ or ‘no’ referendum for instance), using additively homomorphic
encryption one can efficiently compute an encryption of the sum of all the ballots, so that a
single decryption reveals the result of the election [Ben87]. This saves considerable computa-
tional resources compared to decrypting each individual ciphertext. Beyond this application,
linearly homomorphic encryption has attracted a lot of attention due to its innumerable ap-
plications in building more complex protocols (e.g. encryption switching protocols [CPP16],
privacy-preserving biometric schemes [OPJM10], general multi party computation [BDOZ11],
or general-purpose indistinguishability obfuscation [BDGM20]).

The first homomorphic encryption scheme (which was also the first probabilistic encryption
scheme) was put forth by Goldwasser and Micali in [GM84]. This scheme was later improved by
Benaloh in his thesis [Ben87], then by Naccache and Stern in [NS98], Okamoto and Uchiyama
[OU98] and then further generalised by Joye and Libert in [JL13]. One of the most accom-
plished linearly homomorphic cryptosystems, standardised in ISO/IEC-18033-6, was designed
by Paillier [Pai99] (described later in this section). Its semantic security relies on the DCR
assumption. Paillier’s scheme was then generalised by Damg̊ard and Jurik [DJ01], allowing to
encrypt larger messages. More recently, Castagnos and Laguillaumie [CL15] put forth the first
practical linearly homomorphic encrytpion scheme relying solely on the DDH assumption. This
latter encryption scheme will be detailed in Section 3.5.1 as it arises from the CL framework.

Besides devising linearly homomorphic encryption schemes with interesting new properties
in Section 3.5, we also use these as building blocks to devise functional encryption schemes
allowing for the computation of linear functions in Chapter 4, and distributed signatures in
Chapter 5.

Definition 2.6 (Linearly homomorphic PKE). Let λ be a positive integer. A linearly ho-
momorphic public key encryption scheme with plaintext space a group (M,+), and cipher-
text space C, is a tuple of algorithms (Setup,KeyGen,Enc, Dec,EvalSum,EvalScal), where
(Setup,KeyGen,Enc,Dec) is a PKE scheme, and denoting pp ← Setup(1λ), (pk, sk) ←
KeyGen(pp), for any m0,m1 ∈ M, c0 ← Enc(pk,m0) and c1 ← Enc(pk,m1), the algorithms
EvalSum and EvalScal, which take as implicit input pp, must satisfy the following specifications:

42

CHAPTER 2. PRELIMINARIES

• EvalSum(pk, c0, c1) is a PPT algorithm which on input a public key pk and ciphertexts
c0, c1, outputs a new ciphertext c ∈ C such that Dec(pp, sk, c) = m0 +m1;

• EvalScal(pk, c0, α) is a PPT algorithm which on input a public key pk a ciphertext c0,
and a α ∈ Z, outputs a new ciphertext c ∈ C such that Dec(pp, sk, c) = α ·m0;

Paillier’s Linearly Homomorphic Encryption Scheme from DCR

We here recall the linearly homomorphic encryption scheme of Paillier [Pai99], which is ind-cpa-
secure under the DCR assumption, and has message space Z/NZ, where N is an RSA integer.
This scheme has been extensively used to build inner product functional encryption schemes,
and distributed EC-DSA signatures. Hence through Chapters 4 and 5 we often refer to this
cryptosystem, as we both build upon, and compare our work to Paillier-based constructions.
As will be detailed in Section 3.5, we note that Paillier’s cryptosystem shares many similarities
with the encryption scheme Πhsm-cl we build in Fig. 3.5.

Paillier’s encryption scheme is depicted in Fig. 2.1. The message space is Z/NZ, the
ciphertext space is (Z/N2Z)∗ and the function L is defined as L(x) = x−1

N for x ∈ Z.
Paillier’s cryptosystem exploits the fact that in Z/N2Z, and for m ∈ Z/NZ it holds that

Algorithm KeyGen(1λ)

1. (N, (P,Q))← GenRSA(1λ)

2. Let Λ← (P − 1)(Q− 1)

3. Let g ← N + 1

4. Let µ ← Λ−1 mod N . If the computa-
tion of µ fails go back to step 1.

5. Set pk := (N, g) and sk := (N,Λ, µ).

6. Return (pk, sk)

Algorithm Enc(pk,m)

1. Sample r ←↩ (Z/NZ)∗

2. Let c← gmrN mod N2

3. Return c

Algorithm Dec(sk, c)

1. Let m← L(cΛ mod N2) ·µ mod
N

2. Return m

Algorithm EvalSum(pk, c0, c1)

1. Sample r ←↩ (Z/NZ)∗

2. Let c← c0c1r
N mod N2

3. Return c

Algorithm EvalScal(pk, c0, α)

1. Sample r ←↩ (Z/NZ)∗

2. Let c← cα0 r
N mod N2

3. Return c

Figure 2.1: Paillier’s linearly homomorphic encryption scheme

(1 + N)m = 1 + Nm mod N2. Consequently, as L(1 + Nm) = m mod N , the group Z/N2Z
contains a subgroup of order N , generated by g = N + 1, in which discrete logarithms in base
g can be computed efficiently. We will see parallels to this in our cryptosystems introduced in
Section 3.5.

2.5.3 Collision Resistant Hashing

We will use collision resistant hash functions to build extended projective hash functions in
Chapter 3, Section 3.4.3. They ensure that, though the hash functions are not injective, it

43

CHAPTER 2. PRELIMINARIES

is computationally infeasible to find two different input values which yield the same output
value. A hash function generator is a PPT algorithm H that, on input 1λ, outputs an efficiently
computable function Γ : {0, 1}∗ 7→ {0, 1}λ.

Definition 2.7. Let λ be a positive integer. Algorithm H is a δcr-hard collision resistant hash
function (CRHF) generator if for any PPT adversary A,

AdvcrH,A(λ) def= Pr
[
Γ(x) = Γ(x′) ∧ x 6= x′ : Γ← H(1λ), (x, x′)←A(1λ,Γ)

]
6 δcr.

We say H is a collision resistant hash function if δcr(λ) = negl(λ).

2.5.4 Signature Schemes

In Chapter 5 we build distributed versions of existing digital signature algorithms. We here
provide the definition of a (centralised) digital signature scheme, which is key to understanding
Chapter 5. The specific signature scheme which we distribute in Chapter 5, called EC-DSA,
will be presented in Section 5.1.2.

We also use one time signatures as a building block for our inner product functional en-
cryption schemes secure against active adversaries in Chapter 4.

Definition 2.8 (Signature scheme). Let λ be a positive integer. A signature scheme with
message space M is a tuple of algorithms (Setup,KeyGen,Sign,Verif) with the following speci-
fications:

• Setup(1λ) is a PPT algorithm which on input 1λ, outputs public parameters pp.

• KeyGen(pp) is a PPT algorithm which on input public parameters pp, outputs a public
verification key vk and a secret signing key sk;

• Sign(pp, sk,m) is a PPT algorithm which on input public parameters pp, a secret signing
key sk and a message m ∈M, outputs a signature σ.

• Verif(pp, vk,m, σ) is a DPT algorithm which on input public parameters pp, a verification
key vk, a message m ∈M and a signature σ, outputs either 0 or 1.

Correctness requires that for any λ ∈ N, any pp ← Setup(1λ), for all (vk, sk) ← KeyGen(pp),
and all messages m, if σ ← Sign(pp, sk,m), then Verif(pp, vk,m, σ) = 1.

Remark. In order to avoid heavy notation, the input pp to algorithms Sign and Verif will not
be written explicitly as public parameters will be obvious from the context.

We next define standard security experiments for signature schemes.

The experiment ExpsecΣ,F. Let Σ := (Setup,KeyGen,Sign,Verif) be a signature scheme with
message space M, and let F be a PPT forger. For each λ ∈ N we denote by ExpsecΣ,F(λ) the
random variable that is defined via the following experiment involving the scheme Σ, the
adversary F, and a challenger C:

1. Setup phase: C runs pp ← Setup(1λ), (vk, sk) ← KeyGen(pp), and sends pp and vk to
F. It also initialises an empty list Lsig.

2. Query phase: F performs signature queries by sending messages m ∈ M of its choice
to C. Then C computes σ ← Sign(sk,m), adds (m,σ) to Lsig and sends σ to F.

3. Output phase: F outputs (m′, σ′).

44

CHAPTER 2. PRELIMINARIES

(a) If sec = euf-cma, the output of the experiment is 1 if and only if Verif(vk,m′, σ′) = 1
and F never queried m′ to C.

(b) If sec = suf-cma, the output of the experiment is 1 if and only if Verif(vk,m′, σ′) = 1
and (m′, σ′) /∈ Lsig.

The standard security notion required of digital signature schemes is existential unforgeability
under chosen message attacks, we also consider some variants, definitions of which can be
found in [BHJ+13].

Definition 2.9 ([GMR88]). Consider a signature scheme Σ with message space M, and a
PPT forger F against security notion sec ∈ {euf-cma, suf-cma}; for any positive integer λ, F’s
advantage is defined as:

AdvsecΣ,F(λ) def= Pr
[
ExpsecΣ,F(λ) = 1

]
.

If Adveuf-cmaΣ,F (λ) = negl(λ) then Σ is existentially unforgeable under chosen message attacks
(euf-cma). If Advsuf-cmaΣ,F (λ) = negl(λ) then Σ is strongly unforgeable under chosen message
attacks (suf-cma). A signature scheme Σ is called a one-time signature if F is only allowed
to make a single signature query in ExpsecΣ,F; we denote the corresponding security euf-1-cma
(resp. suf-1-cma). For sec ∈ {euf-cma, suf-cma, euf-1-cma, suf-1-cma} we say Σ is δ-sec if for all
PPT forger F, AdvsecΣ,F(λ) ¬ δ(λ).

2.5.5 Commitments

Equivocal commitment schemes, introduced by Beaver in [Bea96], allow a sender S to commit
to a message m such that this message is perfectly hidden from the receiver R; however in the
opening phase, when S reveals m to R, S cannot (under computational assumptions) reveal a
different m than that committed. The scheme further allows for a trapdoor which enables the
opening of commitments to arbitrary messages (this is called equivocating the commitment).
The trapdoor should of course be hard to compute efficiently. If the commitment scheme is non
malleable, one cannot use the commitments of other parties to construct a new commitment
which is in some way related to the other parties’ inputs.

We use non malleable and equivocal commitment schemes in our distributed signature
schemes of Chapter 5. By requiring that all parties commit to their respective input values
before any committed values are opened, one ensures4 independence of inputs.

Definition 2.10 (Equivocal commitment scheme). Let λ be a positive integer. A (non-
interactive) equivocal commitment scheme is a tuple of algorithms (Setup,Com,Open,Equiv)
with the following specifications:

• Setup(1λ) is a PPT algorithm which on input 1λ outputs public parameters pp and
associated secret trapdoor key tk;

• Com(pp,m; r) is a DPT algorithm which on input public parameters pp, a message m,
and random coins r, outputs a commitment c and an opening value d (if a sender refuses
to open a commitment d = ⊥);

• Open(pp, c, d) is a DPT algorithm which on input public parameters pp, a commitment
c and an opening value d, outputs either a message m or an error symbol ⊥;

4As long as the trapdoor is unknown to all parties.

45

CHAPTER 2. PRELIMINARIES

• Equiv(pp, tk,m, r,m′) is a PPT algorithm which on input public parameters pp, a trap-
door key tk, a message m, random coins r and another message m′, outputs an equivo-
cating opening value d̂.

Correctness requires that ∀λ ∈ N, any message m, and any random coins r, for any (pp, tk)←
Setup(1λ) it holds that Open(pp, Com(pp,m; r)) = m. Equivocality requires that for all mes-
sages m and m′, any random coins r, any (pp, tk)← Setup(1λ), denoting (c, d)← Com(pp,m; r)
and d̂← Equiv(pp, tk,m, r,m′) it holds that Open(pp, c, d̂) = m′.

Security properties. Let λ be a positive integer. The properties we will require of our
commitment schemes are the following:

• Perfect hiding: for every message pair m,m′ the distributions of the resulting commit-
ments are statistically close.

• Computational binding: for any PPT adversary A, and any (pp, tk) ← Setup(1λ), the
probability that A, on input pp, outputs (c, d0, d1) satisfying Open(pp, c, d0) = m0;
Open(pp, c, d1) = m1; m0 6= ⊥; m1 6= ⊥ and m0 6= m1 is negligible in λ.

• Indistinguishability of opening fake and real commitments: for any PPT adversary A,
any (pp, tk) ← Setup(1λ), any messages m,m′ and randomness r, r′, denoting (c, d) ←
Com(pp,m; r), (c′, d′)← Com(pp,m′; r′) and d̂← Equiv(pp, tk,m′, r′,m), it holds that:∣∣∣Pr

[
b = b∗ : b←↩ {0, 1}, (c0, d0)← (c, d),

(c1, d1)← (c′, d̂), b∗ ←A(pp, cb, db)
]∣∣∣ = negl(λ).

• Concurrent non-malleability: a commitment scheme is non-malleable [DDN00] if no PPT
adversary A can “maul” a commitment to a value m into a commitment to a related
value m. The notion of a concurrent non-malleable commitment [DDN00,PR05] further
requires non-malleability to hold even if A receives many commitments and can itself
produce many commitments. We refer the reader to [PR05] for a formal definition of
concurrent non-malleability.

Concurrent non-malleability is achieved by the commitment schemes presented in [DG03,
Gen04,MY04]. Any of these can be used in our full threshold signature protocol of Section 5.3.
For the two party signing protocol of Section 5.2, we use an ideal commitment functionality,
this implies that security of the commitment should be proven in the universally composable
security framework (cf. Section 2.3.2). To implement the ideal commitment functionality used
in our two party protocol, one can use e.g. [HMRT12,BCPV13,Fuj16].

2.6 Background on Class Groups
The framework adopted throughout this thesis – called the CL framework, introduced by
Castagnos and Laguillaumie at [CL15], and presented in Chapter 3 – can be instantiated from
ideal class groups of orders of an imaginary quadratic field. This is the main instantiation we
will adopt to illustrate the feasibility and efficiency of all our constructions. We here provide
some facts and notations from the theory of imaginary quadratic number fields, details can be
found in [Cox89].

46

CHAPTER 2. PRELIMINARIES

2.6.1 Imaginary Quadratic Fields and Class Groups

An imaginary quadratic field can be written uniquely in the form K := Q(
√
N), where N is

a square free negative integer. The integer ∆K , defined as ∆K := N if N = 1 mod 4, and
∆K := 4N otherwise, is the fundamental discriminant of K. The ring of integers O∆K

of K is
the free Z-module of rank 2 = [K : Q] defined as O∆K

:= Z+ωKZ where ωK := ∆K+
√

∆K
2 . An

order O of a quadratic field K is a subring O ⊂ O∆K
that is also a free Z-module of rank 2 so

that it contains an integral basis of K; an order O = aZ+ bZ can be succinctly represented by
the basis [a, b] (and so O∆K

= [1, ωK]). We call O∆K
the maximal order since it contains every

other order. Moreover, since both O and O∆K
are free Z-modules of the same rank, it holds

that the index f = [O∆K
: O] is finite. The integer f is called the conductor of O. Then as

O∆K
= [1, ωK], one can show that O = [1, fωK] [Cox89, p.133]. Another important invariant

of O is its discriminant, which is given by the formula ∆ := f2∆K .
We now give a little background on the theory of ideals in a non-maximal order. Throughout

this section we closely follow the book [Cox89, p.132-150]. Consider an order O of discriminant
∆. An ideal a of O is a sub-Z-module of O such that for every r ∈ O and a ∈ a, we have
ra ∈ a. If a is a nonzero ideal of O, then O/a is a finite ring, and one can thus define the norm
of a to be N(a) = |O/a|.

A fractional ideal a of O is a subset of K for which there exists a non-zero integer d such
that da is an ideal of O. An O-ideal a is principal if there exists α ∈ K∗ such that a = αO. It
is clear that if a is a fractional ideal of O, then a ⊂ O if and only if a is an ideal of O, in which
case a is said to be an integral ideal. Having defined fractional ideals, we can now introduce
invertible ideals. A fractional O-ideal a is invertible if there is another fractional O-ideal b
such that ab = O. Clearly principal fractional ideals (which are of the form αO, α ∈ K∗) are
invertible. Given an order O, let I(O) denote the set of invertible fractional ideals. I(O) is a
group under multiplication. The principal O-ideals give a subgroup P (O) ⊂ I(O). When O is
the maximal order O∆K

, we will denote I∆K
:= I(O∆K

) and P∆K
:= P (O∆K

). We can now
define the ideal class group Cl(O) of the order O, which is the quotient

Cl(O) := I(O)/P (O).

The order of the group Cl(O), which is finite, is called the class number of Cl(O), and denoted
h(O). The class number is not efficiently computable if the discriminant is fundamental; in
fact the determination of h(O∆K

) is one of the main problems in algorithmic algebraic number
theory.

Unless K = Q(
√
−3) or Q(i), i.e. ∆ = −3 or 4, for all imaginary quadratic fields it holds

that the group of units of O, denoted O∗ is {±1}. Given an order O of conductor f , a non-
zero O-ideal a is prime to f if a + fO = O. It holds that O-ideals prime to f lie in I(O)
and are closed under multiplication. They generate a subgroup of fractional ideals denoted
I(O, f) ⊂ I(O).

Representing classes

We will be computing with equivalence classes of class groups, and therefore need to select
representatives from each class. Each fractional ideal of an imaginary quadratic order can be
written a = r(aZ + (−b+

√
∆)/2Z) where a, b ∈ Z, r ∈ Q, a > 0 and 4a|(b2 −∆). Therefore

a fractional ideal can be represented by a triple (r, a, b). An ideal (r, a, b) is integral if r ∈ Z,
and if r = 1 the ideal is primitive, and is denoted (a, b) for short. It then holds that the norm
of a is N(a) = a. This notation also represents the binary quadratic form ax2 + bxy + cy2

with b2 − 4ac = ∆. If the form is normal (i.e. −a < b 6 a) then this representation is unique.

47

CHAPTER 2. PRELIMINARIES

Two ideals a1, a2 are said to be equivalent if there is a non zero number α ∈ Q(
√

∆) such that
a2 = αa1. As our class representative, we can thus chose a primitive ideal. Moreover, in class
groups of imaginary quadratic orders each equivalence class of ideals has exactly one reduced
primitive ideal. An ideal is reduced if it is normal, a 6 c and if a = c, then b > 0. We represent
each class of ideals by the unique reduced ideal in the class.

To compute this reduced ideal from any given ideal in the class, one can use the efficient
algorithm presented in [Coh00, Algo. 5.4.2, p.243], which is a variant of Euclid’s algorithm.
This reduction procedure allows us to work with reduced ideals, instead of classes. The product
of two reduced ideals can be computed efficiently using an algorithm which composes quadratic
forms, due to Shanks, and presented in [Coh00, Algo. 5.4.7, p.247]. Both the aforementioned
algorithms have quadratic complexity (even quasi linear using fast arithmetic). A useful result
for our purpose is that any normal ideal a = (a, b) with |a| <

√
|∆|/4 is reduced [Coh00,

Lem. 5.3.4, p.232].

Relations between classes

For any order O, ideals prime to the conductor relate nicely to the ideals of the maximal order
O∆K

. Given any positive integer m, an O∆K
-ideal a is said to be prime to m if a +mO∆K

=
O∆K

; and so the subgroup I∆K
(m) ⊂ I∆K

is the subgroup generated by O∆K
-ideals prime to

m. Let us consider O∆f
, an order of conductor f with ∆f = f2∆K .

• If A is an O∆K
-ideal prime to f , then A ∩O∆f

is an O∆f
-ideal prime to f of the same

norm.

• If a is an O∆f
-ideal prime to f , then aO∆K

is an O∆K
-ideal prime to f of the same norm.

• The map a 7→ aO∆K
is an isomorphism φf : I(O∆f

, f) ∼−→ I∆K
(f).

• The inverse of φf maps a to a ∩O∆f
.

The map φf induces a surjection

φ̄f : Cl(O∆f
)� Cl(O∆K

).

The maps φf , its inverse φ−1
f and φ̄f can be efficiently computed knowing the conductor f (cf.

[PT00]). Moreover the following formula relates the class numbers of both orders, and gives
the order of the kernel of φ̄f (cf. [Cox89, Theorem 7.24]):

h(O∆f
) =

h(O∆K
)f

[O∗∆K
: O∗∆f

]

∏
p|f

(
1−

(∆K

p

)1
p

)
.

Note that h(O∆f
) is always an integer multiple of h(O∆K

).
Throughout this thesis we will consider a prime conductor f = q and consider ∆q := q2∆K ,

for a large fundamental discriminant ∆K < −4 divisible by q. Using the above formula, one
can show that in this case the order of the kernel of φ̄q is

h(O∆q)
h(O∆K

)
= q.

48

CHAPTER 2. PRELIMINARIES

Structure of the kernel of φ̄q

We here explain how one can exhibit, in the class group of an imaginary quadratic field, the
existence of a subgroup in which the DL problem can be efficiently solved. For more details,
we refer the reader to [CL15, Prop. 1] and [Cas19, Section 1.3]. Recall that we consider the
case where f = q is a prime conductor, and consider ∆q := q2∆K , for a large fundamental
discriminant ∆K < −4 divisible by q. From the previous paragraph we know that the order of
the kernel of φ̄q is q. One can demonstrate this by proving there is an effective isomorphism
(still in [Cox89, Theorem 7.24]) between this kernel and

(O∆K
/qO∆K

)×/(Z/qZ)×.

Now as q|∆K the above quotient is cyclic of order q, and denoting f the ideal (q2, q) of O∆q , and
by f := [f] the class of f in Cl(O∆q), Castagnos and Laguillaumie [CL15, Prop. 1] demonstrate
that f generates the kernel of φ̄q. Hence f is of order q. For m ∈ {1, . . . , q − 1} let us denote
L(m) the odd integer in [−q, q] such that L(m) = 1/m mod q; they also show that the reduced
ideal equivalent to fm is equal to (q2, L(m)q). Moreover, if we impose q <

√
|∆K |/4, then all

these ideals of norm q2 will be reduced. As a result the kernel of φ̄q is a cyclic subgroup of
order q of Cl(O∆q) where the DL problem is easy. Indeed any element h of this subgroup 〈f〉
can be represented by a reduced ideal of the form (q2, kq) for some integer k, and the discrete
logarithm of h in base f is k−1 mod q.

The existence of this prime order subgroup in which the DL problem is easy is fundamental
to the design of the CL framework. It is analogue to the fact that the DL problem is easy
in the subgroup of order N of (Z/N2Z)×. This latter property is essential to the Paillier
cryptosystem (cf. Section 2.5.2). Moreover just as the Paillier cryptosystem’s message space is
Z/NZ, the message space of cryptosystems arising from the CL framework is Z/qZ (as detailed
in Chapter 3).

2.6.2 The Discrete Logarithm Problem and Computing the Class Number

For most cryptosystems built in ideal class groups of an imaginary quadratic order, the com-
putational problem on which the security is based is the discrete logarithm (DL) problem.
Solving instances of the DL problem in imaginary quadratic orders is closely related to com-
puting the class number h(∆K) of the ideal class group Cl(O∆K

). The fastest algorithms
for solving these problems in imaginary quadratic fields are based on an improved version
of Hafner and McCurley’s index-calculus algorithm [HM89] due to Jacobson [Jac99]. Biasse
et al. in [BJS10], conjectured that the best known algorithms to solve these problems have
complexity L|∆K |[1/2, o(1)].

In [HM00], Hamdy and Möller give recommendations for securely choosing the discriminant
∆K for use in imaginary quadratic field cryptography, and in particular, such that the DL
problem in Cl(O∆K

) is as hard as in finite fields. It is advised to construct a fundamental
discriminant ∆K and to minimise the 2-Sylow subgroup of the class group. In our case, by
construction ∆K will be the product of two odd primes. By choosing ∆K = −q̃q with q̃ and
q such that q ≡ −q̃ mod 4, it holds that ∆K is a fundamental discriminant. Moreover the
2-Sylow subgroup is isomorphic to Z/2Z if we choose q̃ and q such that

(
q
q̃

)
=
(
q̃
q

)
= −1

(cf. [Kap73, p. 598]). We will thus work with the odd part, which is the group of squares of
Cl(O∆K

). Following the Cohen-Lenstra heuristics, cf. [Coh00, Chapter 5.10.1], the probability
that the odd part of the class group is cyclic is 97.75%; and extending their heuristics, it
is conjectured in [HS06] that the probability that an odd prime d divides h(O∆K

) is less
than 1/d + 1/(d log d). As a result, we can not guarantee that the order of the odd part is

49

CHAPTER 2. PRELIMINARIES

not divisible by small primes. Nevertheless, as indicated in [HM00], if one chooses ∆K large
enough, the tendency of the class number towards having small factors does not mean it will be
smooth with non-negligible probability, hence an adaptation of the Pohlig-Hellman algorithm
is not possible. On average, h(O∆K

) behaves roughly as
√
|∆K |, see [Coh00, Chapter 4.9.15]

(Brauer-Siegel). Moreover (cf. [Coh00, p. 295]),

h(O∆K
) 6

1
π

log(|∆K |)
√
|∆K |. (2.1)

To conclude, following [HM00], if ∆K is taken large enough, generic methods to compute
discrete logarithms such as Pollard ρ-method are slower than the index-calculus algorithms.
Thus, since index-calculus algorithms for solving the DL problem are asymptotically much
slower than index-calculus algorithms to solve the integer factorisation problem, the discrimi-
nant can be taken smaller than the corresponding RSA modulus. This is illustrated in Table 2.1
where we give, for a given security parameter λ, the size in bits of RSA moduli N and dis-
criminants ∆K of imaginary quadratic fields for which factoring and the quadratic field DL
problem have the same estimated running time (figures are taken from [BJS10]).

2.6.3 Key Sizes and Timings

When instantiating our cryptosystems of Chapters 3 to 5 in the CL framework from class
groups, group elements are reduced ideals in the class group of discriminant −q3q̃, and can
thus be represented by two integers smaller than q

√
|∆K/3|. Conversely, for constructions

relying on Paillier’s cryptosystem (or equivalently on the DCR assumption), group elements
are elements of Z/N2Z. Hence in constructions arising from the CL framework, group elements
are considerably smaller than for those arising from Paillier. This is illustrated in Table 2.1,
where λ denotes the security parameter.

For our cryptosystems arising from class groups, the underlying message space will be
Z/qZ. This is much smaller than the Paillier message space Z/NZ. In practice, a 128 bits
message space is large enough, if for instance, one needs to perform computations with double
or quadruple precision.

λ = 112 λ = 128 λ = 192 λ = 256

size CL DCR CL DCR CL DCR CL DCR

N - 2048 - 3072 - 7680 - 15360
q 112 - 128 - 192 - 256 -

∆K 1348 - 1827 - 3598 - 5971 -
group element 1572 4096 2083 6144 3982 15360 6483 30720

Table 2.1: Sizes in bits required to build cryptosystems arising from DCR and from the CL
framework

In terms of timings, a fair comparison is difficult since to our knowledge, no library for
the arithmetic of quadratic forms is as optimised as a standard library for the arithmetic of
modular integers.

In Table 2.2 we measure timings for a multiplication in the class group versus a multipli-
cation in Z/N2Z for different security parameters λ. These timings were performed with the

50

CHAPTER 2. PRELIMINARIES

Pari C Library [PAR20], as this library handles arithmetic in class groups and in Z/N2Z. Tim-
ings are measured on a desktop computer (with Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz
processor).

λ = 112 λ = 128 λ = 192 λ = 256

size CL DCR CL DCR CL DCR CL DCR

Multiplication (ms.) 0.037 0.003 0.048 0.007 0.098 0.030 0.176 0.087

Table 2.2: Comparing timings for one multiplication in class groups and in Z/N2Z

Throughout this thesis the values in Tables 2.1 and 2.2 allow us to estimate the sizes
of elements relevant to the efficiency of our cryptosystems, their theoretical computational
complexity, and extrapolate expected running times.

Precisely we assume the standard square-and-multiply algorithm for exponentiation, with
uniformly distributed exponents – which has an average complexity of about ` squarings and
`/2 multiplications, where ` is the bit-size of the exponent. In class groups, our measures
indicate that the cost of a squaring is essentially equal to the cost of multiplication, hence
we multiply the exponent by 1.5 times the cost of a multiplication. For squarings in Z/N2Z,
the cost is 0.9 times the cost of multiplication in Z/N2Z. Hence we multiply the exponent by
1.4 times the cost of a multiplication. Finally for arithmetic in Z/N2Z, we also distinguish
exponentiations modulo N , as we measure that a multiplication mod N costs 1/3 of the cost
of a multiplication mod N2.

As a final note, in our tables, we adopt the following color-code:

Green values highlight best performing figures.

Orange values highlight figures which are not the best, but not the worst either.

Red values highlight figures which are the most expensive.

2.7 Distributions
As previously noted, the order h(∆K) of the ideal class group Cl(O∆K

) is unknown, we only
have an upper bound for h(∆K) (given by Eq. (2.1)). Hence in our forthcoming applications,
the order will be unknown. This implies that exponents are sampled over the integers, and
not modulo the order of the group, and that we can only sample elements close to uniform
in the considered groups. We first provide lemmas describing distributions from which one
can sample exponents in order to induce distributions close to uniform in these groups, while
minimising the size of exponents so as to optimise efficiency. Next, we prove some properties
of these distributions which will be essential for the analysis of information leakage in our
security proofs.

When possible in our applications we sample exponents from folded Gaussians instead of
folded uniforms to induce distributions close to uniform. This is because Gaussian sampling
allows us to have shorter exponents, which, in our cryptosystems, translates as shorter keys
and randomness, and hence better overall efficiency (the use of Gaussian sampling instead of
uniform has been suggested for instance in [ALS16, CIL17]). In Section 2.7.3 we thus present
definitions and basic results about Gaussian distributions which will be useful for our security
proofs.

51

CHAPTER 2. PRELIMINARIES

2.7.1 Sampling Close to the Uniform Distribution

The following lemmas explain how one can sample exponents over the integers which induce
distributions close to uniform in groups of unknown order (provided one has an upper bound
for this order). Lemma 2.11, proven in [CL15, Appendix C, Lemma 4], explains how to sample
exponents from folded uniforms, while Lemma 2.12, proven in [CIL17, Appendix C, Lemma
1], explains how to sample exponents from folded discrete Gaussian distributions (defined in
Definition 2.17).

Lemma 2.11 ([CL15]). Let G be a cyclic group of order n, generated by g. Consider the
random variable X sampled uniformly from G; as such it satisfies Pr[X = h] = 1

n for all
h ∈ G. Now consider the random variable Y with values in G defined as follows: draw y
uniformly from {0, . . . , B− 1}, with B > n, and set Y := gy. Then, denoting r := B mod n, it
holds that:

∆(X,Y) =
r(n− r)
nB

6
n

4B
.

Lemma 2.12 ([CIL17]). Let G be a cyclic group of order n, generated by g. Consider the
random variable X sampled uniformly from G; as such it satisfies Pr[X = h] = 1

n for all
h ∈ G. Now consider the random variable Y with values in G defined as follows: draw y from

the discrete Gaussian distribution DZ,σ, with σ > n
√

ln(2(1+1/ε))
π , and set Y := gy. Then it

holds that:
∆(X,Y) 6 2ε.

2.7.2 Properties of Almost Uniform Distributions

We here prove some useful results on distributions close to uniform modulo n = ab where a
and b are co-prime. In particular, on the independence of their distribution taken mod a and
taken mod b. It is well know that if exponents are sampled uniformly mod n, then they are
uniformly distributed modulo any divisor of n, and hence mod a and b; moreover, since a is
co-prime with b, the value of these exponents taken mod a is independent of their value mod
b.

As mentioned previously, in our work exponents are often sampled from distributions close
to uniform. We must therefore adapt the aforementioned results to this approximate setting.
We note that though these properties may be folklore, we did not find explicit proofs for them,
which is why we prove them here.

Lemma 2.13. If k is sampled from a distribution Da, which is ε-close to U(Z/aZ) for a ∈ Z
then for all b ∈ Z such that b divides a it holds that (k mod b) follows a distribution ε-close to
U(Z/bZ).

Proof. Let Xa be a random variable sampled from Da, and let Xb be the random variable
defined as Xb = Xa mod b for b dividing a. Then:

∑
k∈Z/bZ

∣∣∣Pr[Xb = k]− 1
b

∣∣∣ =
∑

k∈Z/bZ

∣∣∣a/b−1∑
i=0

(
Pr[Xa = k + ib]

)
− 1
b

∣∣∣
=

∑
k∈Z/bZ

∣∣∣a/b−1∑
i=0

(
Pr[Xa = k + ib]− 1

a

)∣∣∣

52

CHAPTER 2. PRELIMINARIES

6
∑

k∈Z/bZ

a/b−1∑
i=0

∣∣∣Pr[Xa = k + ib]− 1
a

∣∣∣ =
∑

k∈Z/aZ

∣∣∣Pr[Xa = k]− 1
a

∣∣∣ = ε.

Thus Xb follows a distribution at distance 6 ε from the uniform distribution modulo b.

Lemma 2.14. Consider positive integers a and b such that gcd(a, b) = 1. For xa ∈ Z/aZ and
xb ∈ Z/bZ, let use denote crt(xa, xb, a, b) := xa · b · (b−1 mod a) + xb · a · (a−1 mod b) mod ab.
And let Da (resp. Db) be a distribution δa-close to U(Z/aZ) (resp. δb-close to U(Z/bZ)).
Then the distribution {crt(Xa, Xb, a, b), Xa ←↩ Da, Xb ←↩ Db} is δ-close to U(Z/abZ), where
δ 6 δaδb + δa + δb.

Proof. As gcd(a, b) = 1, one has Z/abZ ' Z/aZ × Z/bZ. The induced isomorphism from
Z/abZ to Z/aZ×Z/bZ maps c to (c mod a, c mod b). The probability that a random variable
C := crt(Xa, Xb, a, b) for Xa ←↩ Da, Xb ←↩ Db is equal to a fixed element c of Z/abZ, is
Pr[Xa = c mod a] · Pr[Xb = c mod b]. Then:∑

c∈Z/abZ

∣∣∣∣ 1
ab
− Pr[Xa = c mod a] Pr[Xb = c mod b]

∣∣∣∣
=

∑
c1∈Z/aZ
c2∈Z/bZ

∣∣∣∣ 1
ab
− Pr[Xa = c1] Pr[Xb = c2]

∣∣∣∣
=

∑
c1∈Z/aZ
c2∈Z/bZ

∣∣∣(1
a
− Pr[Xa = c1]

)(1
b
− Pr[Xb = c2]

)

− 1
a

(1
b
− Pr[Xb = c2]

)
− 1
b

(1
a
− Pr[Xa = c1]

)∣∣∣
6

∑
c1∈Z/aZ
c2∈Z/bZ

∣∣∣∣(1
a
− Pr[Xa = c1]

)(1
b
− Pr[Xb = c2]

)∣∣∣∣
+

1
a

∣∣∣∣1b − Pr[Xb = c2]
∣∣∣∣+ 1

b

∣∣∣∣1a − Pr[Xa = c1]
∣∣∣∣ .

As a result, the statistical distance δ to U(Z/abZ) satisfies δ 6 δaδb + δb + δa.

Lemma 2.15. Consider positive integers a and b such that gcd(a, b) = 1, and let D be a
distribution ε-close to U(Z/abZ). Consider the random variable X sampled from D, and let
Xa (resp. Xb) be the random variable defined as Xa = X mod a (resp. Xb = X mod b).
Then the random variables Xa and Xb follow distributions ε-close to U(Z/aZ) and U(Z/bZ)
respectively. Moreover even knowing Xb, Xa remains 2ε-close to U(Z/aZ) (and vice versa).

Proof. Let C be an unbounded algorithm which takes as input a tuple (a, b, x) ∈ N2×Z/abZ,
which is either a sample of U or V, before outputting a bit, where:

U := {(a, b, x)| gcd(a, b) = 1 ∧ x←↩ Z/abZ} and V := {(a, b, x)| gcd(a, b) = 1 ∧ x←↩ D}.

Since distributions U and V are ε-close, for any such algorithm C, it holds that:

|Pr[C(U)→ 1]− Pr[C(V)→ 1]| 6 ε.

We further denote UA := {(a, b, xb, xa)|(a, b, x) ←↩ V; xb ← x mod b; xa ←↩ Z/aZ} and
VA := {(a, b, xb, xa) |(a, b, x)←↩ V; xb ← x mod b; xa ← x mod a}.

53

CHAPTER 2. PRELIMINARIES

Consider an unbounded algorithm A which takes as input a sample (a, b, xb, x∗a) of either
UA or VA, and outputs a bit β′. A’s goal is to tell whether x∗a is sampled uniformly at random
from Z/aZ or if x∗a ← x mod a. We demonstrate that if A has significant probability in
distinguishing both input types, then C can use A to distinguish distributions U and V.

On input (a, b, x), algorithm C proceeds as follows; it first sets xb ← x mod b; then it
samples a bit β∗ ←↩ {0, 1}, if β∗ = 0, then C samples x∗a ←↩ Z/aZ, else if β∗ = 1, then it sets
x∗a ← x mod a. Next C sends (a, b, xb, x∗a) to A, which outputs a bit β′. If β = β′, C outputs
1, else it outputs 0.

If C gets as input an tuple of U, whatever the value of β∗, x∗a follows the uniform distribution
mod a and is independent of xb. So A’s success probability in outputting β′ equal to β∗ is
1/2:

Pr[A(a, b, xb, x∗a)→ β∗|(a, b, x)←↩ U] = 1/2 and so Pr[C(U)→ 1] = 1/2.

On the other hand if (a, b, x)←↩ V, then C outputs 1 if A guesses the correct bit β∗ (when its
inputs are either in UA or VA as expected), i.e.

Pr[C(V)→ 1] = Pr[A → β∗|(a, b, x)←↩ V].

And so

|Pr[C(U)→ 1]− Pr[C(V)→ 1]| = |Pr[A → β∗|(a, b, x)←↩ V]− 1/2|
= 1/2 · |Pr[A(UA)→ 1]− Pr[A(VA)→ 1]|.

Since U and V are ε-close, it holds that |Pr[C(U) → 1] − Pr[C(V) → 1]| 6 ε, and so for any
A as above:

|Pr[A(UA)→ 1]− Pr[A(VA)→ 1]| 6 2ε.

Thus the statistical distance between UA and VA is smaller than 2ε, which implies that
even given (x mod b), the value of (x mod a) remains at statistical distance 2ε of the uniform
distribution modulo a, which concludes the proof.

2.7.3 Technical Tools on Discrete Gaussian Distributions

Though the cryptosystems we present in this thesis are not based on lattice-based cryptog-
raphy, we will use folded discrete Gaussian distributions in order to sample secret exponents.
To ensure these sampled exponents statistically mask confidential information, we use a result
from [GPV08] which explains the conditions for a discrete Gaussian distribution over a lattice
which is reduced modulo a sublattice to be close to a uniform distribution. We will also need
to evaluate the distribution of an inner product when one of the two vectors follows a discrete
Gaussian distribution. The following definitions and basic results about Gaussian distributions
will thus be useful for our security proofs.

A lattice Λ in dimension n is the set of all integer linear combinations of a set of linearly
independent vectors in a Euclidean space of dimension n. This set is called a basis of the lattice.
In some of our security proofs we also refer to the minimum λ1(Λ) which is the (Euclidean)
norm of a shortest non-zero vector of Λ. For a comprehensive background on Euclidean lattices
in cryptography the reader may refer to [Ste11], though a strong background on the subject
is not required to understand this thesis.

Definition 2.16 (Gaussian Function). For any σ > 0 define the Gaussian function on R`

centred at c with parameter σ:

∀x ∈ R`, ρσ,c(x) = exp(−π||x− c||2/σ2).

If σ = 1 (resp. c = 0), then the subscript σ (resp. c) is omitted.

54

CHAPTER 2. PRELIMINARIES

Definition 2.17 (Discrete Gaussians). For any c ∈ R`, real σ > 0, and `-dimensional lattice
Λ, define the discrete Gaussian distribution of support Λ, standard deviation parameter σ and
center c as:

∀x ∈ Λ, DΛ,σ,c(x) = ρσ,c(x)/ρσ,c(Λ),

where ρσ,c(Λ) =
∑
x∈Λ ρσ,c(x).

Lemma 2.18 is a supporting lemma for proof of Lemma 2.19, which allows to evaluate
the distribution of the inner product resulting from a constant vector x, and a vector with
coordinates sampled from a Gaussian distribution over the lattice x · Z.

Lemma 2.18. Let x ∈ R` \ {0}, c ∈ R`, σ ∈ R with σ > 0 and σ′ = σ/||x||2, c′ = 〈c,x〉
〈x,x〉 . A

random variable K is distributed according to DZ,σ′,c′ if and only if V := Kx is distributed
according to DxZ,σ,c.

Proof. Let k ∈ Z, and v := kx ∈ xZ, then

Pr[V = v] = Pr[V = kx] = Pr[K = k] =
ρσ′,c′(k)
ρσ′,c′(Z)

·

As in the proof of [GPV08, Lemma 4.5], one can compute ρσ′,c′(k) = ρσ((k − c′)||x||2) =
ρσ((k − c′)x) = ρσ(v − c′x). It holds that u := c′x is the orthogonal projection of c on xR.
By Pythagoras’ Theorem,

||v − c||22 = ||v − u||22 + ||c− u||22.

Thus ρσ(v−c′x) = ρσ(||v−u||2) = ρσ(||v−c||2)×C where C = exp(π||c−u||
2
2

σ2) is a constant.
Therefore we have demonstrated that for k ∈ Z, v = kx, ρσ′,c′(k) = ρσ,c(v)× C. And so:

Pr[V = v] =
ρσ,c(v)× C∑

z∈Z ρσ,c(zx)× C
= DxZ,σ,c.

Lemma 2.19. Let x ∈ R` with x 6= 0, c ∈ R`, σ ∈ R with σ > 0. Let V be a random
variable distributed according to Dx·Z,σ,c. Then the random variable S defined as S = 〈x, V 〉
is distributed according to D||x||22·Z,σ·||x||2,〈c,x〉

.

Proof. As V is distributed according to Dx·Z,σ,c, we have V = Kx where K is sampled from
DZ,σ/||x||2,c′ where c′ = 〈c,x〉

〈x,x〉 (cf. Lemma 2.18). As a result, one can write S = K〈x,x〉,
and applying the previous lemma another time in dimension 1, we get that S is distributed
according to D||x||22·Z,σ·||x||2,〈c,x〉

.

Lemma 2.21 gives sufficient conditions on the standard deviation σ for a Gaussian sam-
ple over a lattice Λ0 to be distributed almost-uniformly modulo a sublattice Λ′0. To state
Lemma 2.21, we first need to define the smoothing parameter of a lattice, as defined in [MR04b].

Definition 2.20 ([MR04b]). For an n-dimensional lattice Λ, and positive real ε > 0, the
smoothing parameter ηε(Λ) of Λ is defined to be the smallest s such that ρ1/s(Λ∗\{0}) 6 ε,
where Λ∗ := {x : ∀y ∈ Λ, 〈x,y〉 ∈ Z} is the dual of Λ.

Lemma 2.21 ([GPV08]). Let Λ′0 ⊂ Λ0 ⊂ R` be two lattices with the same dimension. Let
0 < ε < 1/2. Then for any c ∈ R` and any σ ηε(Λ′0), the distribution DΛ0,σ,c mod Λ′0 is
within statistical distance 2ε from the uniform distribution over Λ0/Λ′0.

55

CHAPTER 2. PRELIMINARIES

2.8 Zero-Knowledge Proofs and Arguments
A zero-knowledge (ZK) proof [GMR85] is an interactive protocol between a prover and a
verifier. At the end of the protocol the verifier should be convinced of the truth of a statement
(within some probability, called soundness error), while the prover is guaranteed that the
verifier learns nothing more than the fact the statement is true. These proofs are widespread in
privacy-preserving protocols, in particular in multi-party computation. Zero-knowledge proofs
are a particularly useful tool allowing parties to prove to each other that they behave honestly,
thereby enforcing them to follow the prescribed protocol. In this section we give some high
level background on zero-knowledge proofs and arguments as we will devise, in Sections 3.6
and 3.7, zero-knowledge proofs and arguments resulting from the CL framework.

In the following, a relation generator R is an algorithm which on input 1λ for some positive
integer λ, outputs the description of a binary relation R, a language L and a set of witnesses
W. A statement x is in L if and only if there exists a witness w such that (x,w) ∈ R. We say
that x ∈ L is a true statement while x /∈ L is a false statement. We at times use R to denote
both the description (R,L,W), and the relation itself.

2.8.1 Zero-Knowledge Proofs

Consider (R,L,W)← R(1λ) for a security parameter λ ∈ N. An (interactive) zero-knowledge
proof system (P, V) for language L is an interactive protocol between two probabilistic algo-
rithms: a prover P and a PT verifier V . Informally P — who detains a witness for a given
statement — must convince V that the statement is true without revealing anything other than
the truth of this statement to V . Specifically if (P, V)(x) is a random variable representing
the output of V at the end of an interaction with P , and (P, V)(x) = 1 (resp. (P, V)(x) = 0)
indicates V accepts (resp. rejects) the proof, the following properties must hold:

• Completeness: for any x ∈ L, it holds that Pr[(P, V)(x) = 1] 2/3.

• Soundness: for any prover P ∗ and for any x /∈ L, it holds that Pr[(P ∗, V)(x) = 1] ¬ 1/3.

• Zero-knowledge: for every PPT verifier V ∗, there exists a probabilistic simulator S run-
ning in expected PT such that the following two probability ensembles are indistinguish-
able (either perfectly, computationally or statistically):

1. {(P, V ∗)(x)}x∈L
def= the output of V ∗ after interacting with P on common input

x ∈ L, and

2. {S(x)}x∈L
def= the output of S on input x ∈ L

The simulator’s purpose is to efficiently produce a view of what V ∗ would see if it were
to interact with the prover P . The existence of S demonstrates clearly that V ∗ did not
need P to gain whatever information it obtained, and thus that V ∗ learns nothing from
the interaction with P . Usually, S achieves this goal by using V ∗ as a black-box over
which it has complete control. Also, S can interact with V ∗, making V ∗ believe that it
is interacting with P .

The soundness error of the protocol is the probability that a cheating prover P ∗ succeeds
in giving a valid proof for some statement x /∈ L.

56

CHAPTER 2. PRELIMINARIES

Proving knowledge. While a zero-knowledge proof suffices to convince V of the existence
of a witness w for the statement, a zero knowledge proof of knowledge (ZKPoK) additionally
convinces V that the prover knows such a witness. This is formalised by the additional require-
ment that there exists a knowledge extractor M , which can extract a valid witness from any
prover who succeeds in giving a correct proof with high-enough probability. Specifically, the
extractor can interact with P , making P believe that it is interacting with V . The extractor’s
purpose is to extract the “secret knowledge” that P claims to have. The existence of such an
extractor demonstrates P must be honest about knowing the secret.

We use the notation introduced by Camenisch-Stadler [CS97], which conveniently expresses
the goals of a ZKPoK:

ZKPoKx{(w) : (x,w) ∈ R}.

For a full explanation on this model see [Gol01].

Sigma protocols. There exists a general 3-move framework for interactive zero knowledge
proofs, called Σ-protocols [Cra97,CD98]. For such protocols there is a clear and fairly straight-
forward method of proving that the soundness and zero-knowledge properties hold. A Σ pro-
tocol is of the following form, where for (x,w) ∈ R, the statement x is common input to P, V
and the witness w for x is private input to P :

1. P sends a message t to V (often referred to as a commitment)

2. V sends a random integer k to P (k is the challenge)

3. P answers with some value u, and V accepts or rejects according to everything it has
seen so far (its view), i.e. x, t, k, u.

A Σ-protocol satisfies the following properties:

Special soundness Given x and the transcript of any two accepting interactions with input
x, denoted t, k, u and t, k′, u′ where k 6= k′, one can efficiently compute w such that
(x,w) ∈ R. Note that this implies soundness of the protocol.

Special honest verifier zero-knowledge There exists a PT simulator S, which on input
x and a random challenge k outputs a transcript (t, k, u) such that (1) this transcript
would lead V to accept and (2) (t, k, u) follows the same probability distribution as
transcripts produced by real executions of the protocol between P and V . This implies
the protocol is zero-knowledge with respect to verifiers which follow the protocol, called
honest verifiers.

2.8.2 Zero-Knowledge Arguments

In the formulation of an interactive zero knowledge proof, the soundness property must hold
for any unbounded prover P ∗, it hence refers to all possible ways of trying to fool a verifier.
A fundamental variant of the notion of interactive proofs was introduced by Brassard et al.
[BCC88] who relaxed soundness so that it only refers to feasible ways of trying to fool the
verifier, i.e. the prover P ∗ must also run in polynomial time. Such protocols are called zero-
knowledge arguments of knowledge (also referred to as computationally convincing proofs of
knowledge). Hence a zero-knowledge argument should satisfy properties of completeness and
zero-knowledge as in Section 2.8.1, however the soundness property is replaced by computa-
tional soundness.

57

CHAPTER 2. PRELIMINARIES

As in the case of proofs, a zero-knowledge argument convinces the verifier V of the existence
of a witness for a given statement, whereas a zero-knowledge argument of knowledge (ZKAoK)
additionally convinces V that the prover knows such a witness. We will also use the notation
of [CS97] to express the goals of a zero knowledge argument of knowledge:

ZKAoKx{(w) : (x,w) ∈ R}.

Since we now consider polynomial time provers, the knowledge extractor M must now also
run in polynomial time. Indeed recall that M interacts with P so as to extract P ’s “secret
knowledge”. The existence of such an extractor, running in polynomial time, demonstrates
that a polynomial time P must be honest about knowing the secret.

As the notion of zero-knowledge for arguments is identical to that of zero-knowledge proofs,
let us, for the time being forget this property, and focus on arguments of knowledge, so as to
lighten terminology.

Framework adopted to prove soundness. For the ZKAoK which we build in Section 3.7,
we reduce an argument’s soundness to the hardness of some computational problem. As ob-
served by Damg̊ard and Fujisaki [DF02], Bellare and Goldreich’s definition of soundness for
computationally convincing proofs of knowledge [BG93] requires that, for a given relation R,
no cheating prover P ∗ can falsely prove that it knows a witness w for some statement x; this
must hold for all large enough instances x, which are chosen by the prover.

Now since soundness only holds under computational assumptions, prior to its interaction
with V , P ∗ could, with significant probability (but in arbitrary time), compute some trapdoor
information associated to the language L, the set of witnesses W and the relation R. This
would allow it to successfully answer V ’s challenge, even without knowing the witness for
its input statement (jumping ahead, in our protocols of Section 3.7, P ∗ could compute the
structure of the class group, given which computing roots would no longer be hard).

This is why we use a relation generator R (as introduced in [DF02]). This relation generator
produces the challenge of the underlying computational problem which will be given as input to
P ∗. Then P ∗ produces a statement x, used as input (along with the relation R, and the public
parameters received from R) for the interactive proof it conducts with V (this interactive
proof is ran by the machine called Pview below). Now P ∗ wins if, for such an x, the standard
soundness requirement fails. The protocol will be considered computationally sound if any
polynomial time P ∗’s probability of winning is upper bound by some small function of the
security parameter.

Let us now formally provide terminology and definitions relating to arguments of knowledge
as defined in [DF02]. Consider (R,L,W)← R(1λ) for a security parameter λ ∈ N. The prover
P gets as input the relation R, outputs a statement x and runs the interactive proof with a
verifier V using (R, x) as common input.

Consider P ’s view view after outputting x. This view contains all inputs, messages ex-
changed and random coins; consequently the statement x is determined by view. From P ,
one can define a machine Pview which starts in the state P is in after having seen view view
and having produced x. Pview then conducts the protocol with V following P ’s algorithm. We
denote:

accview,P the probability that P makes V accept, conditioned on view.

Intuitively the knowledge error function κ is:

κ is the probability that P can make V accept without knowing a witness w s.t. (x,w) ∈ R.

58

CHAPTER 2. PRELIMINARIES

An extractor is a machine M that gets the relation R and a statement x as an input, has
black-box access to Pview for some view consistent with x and computes a witness w satisfying
(x,w) ∈ R.

Intuitively, if a cheating prover P ∗, which does not know the witness w for x, is capable
of making V accept with probability greater than κ, then the extractor M should be able to
efficiently extract a witness from P ∗. If so M is successful in its extraction task. However, if
M cannot extract a witness in reasonable time, it fails. We formally define the notion of failure
in Definition 2.22.

Definition 2.22 ([DF02]). Consider a positive integer λ, a knowledge error function κ : N→
[0, 1], a PT cheating prover P ∗, an extractor M and a polynomial p. We say that M fails on
view view if accview,P ∗(λ) > κ(λ), and the expected running time of M using P ∗view as oracle,
is greater than p(λ)

accview,P∗ (λ)−κ(λ) .

Definition 2.23. Let λ be a positive integer. Let R be a PPT relation generator, and consider
a proof system (P, V), a cheating prover P ∗, a knowledge extractor M , a polynomial p and a
knowledge error function κ : N→ [0, 1]. Consider the following experiment with input λ:

1. Sample (R,L,W)← R(1λ).

2. Give the relation R as input to P ∗; which outputs a statement x.

3. From steps 1 and 2, define the view view.

4. Run the extractor M on input the relation R and the statement x, with black-box access
to accview,P ∗ for view view.

The advantage of P ∗, denoted Advκ,M,p
P ∗ (λ), is the probability (taken over the random coins of

R, P ∗) that M fails in this experiment.

Definition 2.24. Let λ be a positive integer and let (R,L,W) ← R(1λ). The proof system
(P, V) is an argument of knowledge for R, with knowledge error κ, if the following hold:

• Completeness: If an honest prover P , on input R, produces (x,w) ∈ R, sends x to V and
conducts the protocol with V , then V accepts with overwhelming probability in λ.

• Computational Soundness: There exists a polynomial p and an extractor M , such that
for any PT prover P ∗, Advκ,M,p

P ∗ (λ) = negl(λ).

If the zero-knowledge property of Section 2.8.1 also holds for (P, V), then it is said to be a
zero-knowledge argument of knowledge.

2.8.3 Groups of Unknown Order

To understand the issues which arise in groups of unknown order, let us first consider the well
known Σ-protocol due to Schnorr [Sch90]. This protocol is a proof of knowledge of a discrete
logarithm in groups of known prime order. Precisely, consider a group G generated by g of
prime order q, w ∈ Z/qZ is a witness for x ∈ G if x = gw. The prover P knows a secret
w ∈ Z/qZ and wants to convince V that it knows the DL of x := gw ∈ G. To prove knowledge
of w, P performs with V the protocol described Fig. 2.2.

59

CHAPTER 2. PRELIMINARIES

Input : w and (x,G, g, q) Input : (x,G, g, q)
Repeat ` times

r ←↩ Z/qZ
t← gr

t−−−−−−−−−→

k←−−−−−−−−− k ←↩ C
u← r + kw mod q u−−−−−−−−−→ If xkt = gu ∈ G accept, else reject.

Figure 2.2: The Schnorr ZKPoK for knowldge of w such that x = gw.

Elementary rounds of a Σ-protocol can be repeated sequentially; we denote by ` the number
of repetitions. The security analysis of the scheme shows that even a dishonest V ∗ cannot learn
any additional information about w, since r perfectly masks the secret value, as long as |C|
and ` are polynomial in the security parameter; so the proof is perfectly zero-knowledge.
Furthermore, if V accepts with probability substantially greater than 1/|C|, P must know the
discrete logarithm w of x; this yields a knowledge error of (1/|C|)`, which proves soundness.
Indeed, assume P is accepted with probability significantly greater than 1/|C|, then there must
exist, for a given commitment t, two different challenges k and k′ for which P can get V to
accept. Denoting u and u′ the corresponding answers of P , since both proofs were accepted,
it holds that t = gux−k = gu

′
x−k

′
, such that P could compute w = (u′ − u)(k′ − k)−1 mod q;

this proves special soundness.
Now observe that if q were not prime, one has no guarantee that (k′ − k) is invertible

mod q unless C = {0, 1}. Thus if one adapts Σ-protocols to groups of unknown order in a
straightforward way, one must use binary challenges in order to be able to extract w from two
accepting transcripts. This implies that one round of the protocol has a knowledge error of
1/2 and must be repeated sequentially sufficiently many times to achieve a reasonably small
knowledge error. These repetitions result in protocols which are an order of magnitude less
efficient. It is thus desirable to design (computationally) convincing proofs of knowledge for
groups of unknown order with large challenge spaces.

Dealing with groups of unknown order makes such proofs typically harder to analyse, one
can use techniques developed for zero-knowledge proofs over the integers [Lip03]. The first
efficient solution for proofs in groups of unknown order was given in [FO97] and was later
corrected by Damg̊ard and Fujisaki [DF02]. Since their work, other variants overcoming some
of their restrictions have been put forth. In particular, Camenisch et al. [CKY09] provided a
framework to identify input distributions, and initial constraints under which protocols can be
employed and satisfy the standard properties of ZK proofs. We note that the CL framework
(defined in Section 3.1) is not compatible with the framework of [CKY09], since group elements
are not efficiently recognisable (a property required for their notion of a safeguard group).
Consequently in our protocols of Section 3.7 we build upon the techniques of [DF02] for our
arguments of knowledge.

The high level idea is the following: assume an extractor M running P has obtained tran-
scripts (t, k, u) and (t, k′, u′) as above (this occurs independently of whether the group order is
known or not). We say that the pair of transcripts is good, if M can extract w from them; i.e.,
for groups of unknown order if (k′− k) divides (u′− u) in Z. Conversely, a set of values which
does not allow to extract w is bad, but will allow to break some computational assumption
with significant probability. Then one demonstrates that if there exists a prover P ∗ which can
cheat with significant probability, but that M cannot extract a witness from P ∗, then M must

60

CHAPTER 2. PRELIMINARIES

obtain a set of bad values with significant probability, which contradicts the hardness of the
underlying assumption.

61

CHAPTER 2. PRELIMINARIES

62

Chapter 3

Enriching the CL framework

The framework adopted throughout this thesis – called the CL framework – was introduced
by Castagnos and Laguillaumie in [CL15]. As we shall see, its homomorphic properties, and
its unusual ability to encode confidential information in a prime order group, render it partic-
ularly interesting. In this chapter, we devise simple building blocks from the CL framework.
These tools will be the foundations providing support for the more complex cryptosystems
of Chapters 4 and 5. In Section 3.1 we first define the CL framework, and describe how one
instantiates it from ideal class groups of an imaginary quadratic field. Next in Section 3.2,
we present the mathematical problems (arising from this framework) which will underlie the
security of our cryptosystems. Two of these assumptions, which we call HSM-CL and DDH-f ,
are new to our work, while the DDH-CL assumption is the original assumption used in [CL15]
(the difficulty of breaking these problems is compared in Section 3.5.4). At this point, we will
be ready to devise, in Section 3.3, projective hash functions from the CL framework.

Projective hash functions (PHF) were first introduced by Cramer and Shoup in [CS02],
we build upon their framework, and consider the more general setting where group elements
may not be efficiently recognisable. We define a number of properties for PHFs, namely ho-
momorphic properties, essential for the correctness of our upcoming constructions, as well
as properties required to ensure security. In particular, we recall the standard smoothness
property for PHFs, but we also define a new property, called decomposability, which will be
extremely useful in all our applications, as it allows a clear separation between the information
which can be leaked to an adversary without having any harmful consequences on the security
of the cryptosystem, and that which must stay hidden. These PHFs will be the main building
blocks used in Chapters 4 and 5.

Running examples. To help understand technical notions, all of the definitions and prop-
erties regarding PHFs will be illustrated with three running examples. These will also be used
through Chapter 4.

• The first arises from traditional DDH in finite fields. This allows us to illustrate all our
concepts in a framework with which most readers are familiar. Moreover, as we shall see
in Chapter 4, many of our generic constructions, when instantiated from DDH, result
in DDH based schemes which pre-date our work (e.g. the IPFE schemes from DDH of
[ALS16]), while our proofs yield the best known security bounds. This demonstrates that
our approach truly provides a unified view of a range of cryptographic protocols without
sacrificing efficiency.

• Our other two running examples result from our previously defined assumptions in the CL
framework: HSM-CL and DDH-f . We note that these examples are notably less intuitive,
and proving they attain the aforementioned properties tends to be more involved than
for the DDH assumption. These complications are mainly due to the fact that in the CL

63

CHAPTER 3. ENRICHING THE CL FRAMEWORK

framework, the group order is unknown, and elements may not be efficiently recognisable.

We note that one can also build PHFs from the DCR assumption, which could be made to
satisfy all our properties. Such an instantiation would very much resemble our HSM-CL based
PHFs, the main difference being that confidential information would be encoded in a subgroup
of order an RSA integer N, whereas in the CL framework confidential information is encoded
modulo a prime q. Hence when we use the primality of q, one would rely on the hardness of
factoring N . Instantiating constructions from DCR based PHFs would lead to existing DCR
based cryptosystems (e.g. the (simplified ind-cpa-secure) encryption scheme of [CS03], or the
Paillier-based IPFE schemes of [ALS16]).

In Section 3.4 we recall a folklore generic construction allowing to build linearly homo-
morphic ind-cpa-secure public key encryption from PHFs which satisfy some homomorphic
properties. This generic construction can be seen as a simpler version of that of [CS02], which
allows to build ind-cca-secure public key encryption from PHFs. Then in Section 3.5, we present
three linearly homomorphic encryption schemes from the CL framework, two of which are new
schemes we introduce, and are direct applications of the aforementioned generic construction
with the HSM-CL and DDH-f based PHFs of our running examples.

Finally, in a different vein, in Sections 3.6 and 3.7, we devise zero knowledge proofs and
arguments of knowledge for the CL framework. These will be essential to attain security against
malicious adversaries for our distributed signatures of Chapter 5, as they are a means of forcing
parties to follow the prescribed protocol. In particular, we provide proofs that ciphertexts for
the aforementioned encryption schemes are well formed and variants thereof.

Summary of contributions. To sum up, our contributions in this chapter are new as-
sumptions for the CL framework, corresponding projective hash functions, two new linearly
homomorphic encryption schemes with prime order message space and zero knowledge proofs
and arguments for these schemes.

Related publications and submissions. Most of my personal contributions in this chapter
can be found in:

• [CLT18a] For the introduction of the hardness assumptions HSM-CL and DDH-f in the
CL framework, along with resulting linearly homomorphic public key encryption schemes.

• [CCL+19] For the HSM-CL based projective hash function and the zero-knowledge proof
of knowledge for Rcl-dl of Section 3.6.

• [CCL+20] For the lcm trick of Section 3.6, and the zero-knowledge arguments of knowl-
edge of Section 3.7.

• [CLT20] (submission) For the definition of new properties for projective hash functions,
along with running examples 1 and 2 from DDH and HSM-CL.

3.1 The CL Framework
In [CL15], Castagnos and Laguillaumie introduced the framework of a group with an easy DL
subgroup: a cyclic group G where the DDH assumption holds together with a subgroup F of G
where the discrete logarithm problem is easy. Within this framework, they designed a linearly
homomorphic variant of ElGamal (cf. Section 3.5.1). Moreover, they gave an instantiation in
class groups of an imaginary quadratic field which allows to perform linear operations over
encrypted data modulo a prime q. In this section, we recall the framework of [CL15], denoted
the CL framework throughout the rest of this thesis. To start with, we explicitly define the

64

CHAPTER 3. ENRICHING THE CL FRAMEWORK

generator GenCL used in the framework of a group with an easy DL subgroup introduced in
[CL15].

3.1.1 Definition of the CL Framework

Definition 3.1. Consider a positive integer λ. Let GenCL be a pair of algorithms (Gen, Solve).
The Gen algorithm is a group generator which takes as inputs the parameter λ and a prime q
and outputs a tuple (s̃, g, f, gq, Ĝ, G, F,Gq). The set

(Ĝ, ·) is a finite abelian group of order n̂ := q · ŝ

where the bitsize of ŝ is a function of λ and gcd(q, ŝ) = 1. Algorithm Gen only outputs an
upper bound s̃ of ŝ. It is also required that one can efficiently recognise valid encodings of
elements in Ĝ. The set

(F, ·) is the unique cyclic subgroup of Ĝ of order q , generated by f.

The set
(G, ·) is a cyclic subgroup of Ĝ of order n := q · s where s divides ŝ.

By construction F ⊂ G, and, denoting:

Gq := {xq, x ∈ G}

the subgroup of order s of G, it holds that:

G ' Gq × F.

The algorithm Gen outputs f , gq and g := f · gq which are respective generators of F , Gq and
G. Moreover, the DL problem is easy in F , which means that the Solve algorithm is a DPT
algorithm that solves the discrete logarithm problem in F :

Pr
[
x = x? : (s̃, g, f, gq, Ĝ, G, F,Gq)← Gen(1λ, q), x←↩ Z/qZ, X ← fx,

x? ← Solve(q, s̃, g, f, gq, Ĝ, G, F,Gq, X)
]

= 1.

Remark. We note that in all our applications it is essential that the order of the group Gq

is unknown for security to hold. Indeed, if one knew the order s of Gq, given an element
u ∈ G, one could raise u to the power s, thereby obtaining us ∈ F of which one can efficiently
compute the discrete logarithm in base f . Knowing s breaks all of our assumptions and hence
our resulting applications (cf. [CL15, Lemmas 1 and 2].

Remark. In Definition 3.1 there are a few modifications compared to the original definition of
[CL15]. Namely we take as input the prime q instead of having Gen generate it, and we output
the group Ĝ from which the group G with an easy DL subgroup F is produced. In practice,
with the concrete instantiation from class groups described in Section 3.1.2, this is a just a
matter of rewriting. We note that it is easy to recognise valid encodings of Ĝ while it will be
not so for elements of G ⊂ Ĝ. This is an important difference with Paillier’s encryption, where
one can efficiently tell if an element is in Z/N2Z.

Notation 3.2. We denote Ĝq the subgroup of all q-th powers in Ĝ. Since q and ŝ are co-prime
it holds that:

Ĝ ' Ĝq × F.
The exponent of a finite Abelian group is the least common multiple of the orders of its
elements. We denote $ the group exponent of Ĝq. As such, the order of any x ∈ Ĝq divides
$.

65

CHAPTER 3. ENRICHING THE CL FRAMEWORK

3.1.2 Instantiation from Class Group Cryptography

Our instantiation of the CL framework results from class groups of orders of imaginary qua-
dratic fields. We describe this instantiation of algorithm Gen from Definition 3.1, as detailed in
Fig. 3.1 (adapted from [CL15]). We reuse the notations and concepts presented in Section 2.6.

Consider positive integers λ and µ such that µ λ. According to Table 2.1, and given the
security parameter λ, we know the required size of a discriminant ∆K so that the problem
of computing the class number (or equivalently computing discrete logarithms in the class
group) is intractable; let us denote η(λ) this size of ∆K . We further require 2µ + 2 < η(λ),
the motivation for this will become clear when we define the subgroup F . Now given λ and
a µ-bit prime q, we sample an η(λ) − µ bit prime q̃, such that q · q̃ ≡ −1 (mod 4) and
(q/q̃) = −1. We then construct a fundamental discriminant ∆K := −q · q̃ and associated class
group Cl(O∆K

). As noted in Section 2.6.2, this ensures that the even part of the class group
Cl(O∆K

) is isomorphic to Z/2Z, and that the odd part is the group of squares of Cl(O∆K
).

We then consider the non-maximal order of discriminant ∆q := q2 · ∆K and its class group
Cl(O∆q) of order h(O∆q) = q ·h(O∆K

). Given the factorisation of the discriminant, recognising
squares in Cl(O∆q) can be done efficiently (cf. [Lag80]). This allows us to define the efficiently
recognisable group:

(Ĝ, ·) as the subgroup of squares of Cl(O∆q).

This implies that n̂ := h(O∆q)/2 and ŝ := h(O∆K
)/2. For the upper bound s̃ of ŝ we use the

upper bound on the class number of O∆K
(Eq. (2.1)) so that

s̃ =
⌈ 1

2π
log |∆K |

√
|∆K |

⌉
.

For the subgroup F , we use the kernel of the surjection φ̄q : Cl(O∆q) � Cl(O∆K
), [a] 7→

[aO∆K
]. This kernel is generated by f , where f is the class of (q2, q), which is a reduced ideal

since we required 2µ+2 < η(λ). In Section 2.6.1 on page 49 we detailed how one can efficiently
compute discrete logarithms in base f , which explains how we instantiate the algorithm Solve.

As the bit size of q has at least λ bits, where λ is the security parameter, q is prime to ŝ
except with negligible probability (following the Cohen-Lenstra heuristics).

Now in order to build the deterministic generator gq, we first construct a small prime r
such that ∆K is a square modulo r. We then consider r an ideal lying above r (as in [HJPT98,
Section 3.1]) and the class [r2] ∈ Cl(O∆K

). We assume that this class will be of order s, an
integer of the same order of magnitude as ŝ. We then use the lifting map Cl(O∆K

)→ Cl(O∆q),
[x] 7→ [φ−1

q (x)]q where x is a representative ideal prime to q and φ−1
q is defined in Section 2.6.1,

page 48. One can show that this map is well defined, as the kernel of φ̄q has order q, and is
injective, as gcd(q, s) = 1. Then gq has order s, where:

gq := [φ−1
q (r2)]q.

Finally we let g := gqf , and denote G the subgroup generated by g of order n := s · q.

3.1.3 Instantiating Distributions

For the assumptions introduced in Section 3.2, we will need to sample elements from distribu-
tions Dq and D such that the distributions {gxq , x ←↩ Dq} and {gx, x ←↩ D} are statistically
close to the uniform distribution in Gq and G respectively. For security to hold against ac-
tive adversaries in our upcoming constructions, we will further need to sample elements from
distributions D̂q and D̂, inducing distributions {x mod $,x←↩ D̂q} and {x mod q$, x←↩ D̂}

66

CHAPTER 3. ENRICHING THE CL FRAMEWORK

Gen(1λ, q)

1. Let µ be the bit size of q. Pick q̃ a η(λ) − µ bits prime
such that qq̃ ≡ −1 (mod 4) and (q/q̃) = −1.

2. ∆K ← −qq̃, ∆q ← q2∆K and Ĝ← Cl(O∆q)

3. f ← [(q2, q)] in Cl(O∆q) and F := 〈f〉

4. s̃← d 1
2π log |∆K |

√
|∆K |e

5. Let r be a small prime, with r 6= q and
(

∆K
r

)
= 1, set r

an ideal lying above r.

6. Set gq ← [φ−1
q (r2)]q in Cl(O∆q) and Gq ← 〈gq〉

7. Set g ← gq · f and G← 〈g〉

8. Return (s̃, g, f, gq, Ĝ, G, F,Gq)

Figure 3.1: Group generator Gen

which are statistically close to the uniform distribution in Z/$Z and Z/q$Z respectively.
Indeed, since one can only efficiently recognise valid encodings of elements in Ĝ (but not those
of G), a malicious adversary A could run any of our schemes inputting elements in Ĝq when
they should be in Gq. Such malicious behaviour cannot be efficiently detected, so A could
learn information on the sampled exponents modulo the group exponent $ of Ĝq.

Requiring that the induced distributions be statistically close to uniform in the aforemen-
tioned groups allows for more flexibility in our upcoming proofs, which is of interest, since the
assumptions we define in Section 3.2 do not depend on the choice of the distribution.

Since the order s of Gq, and the group exponent $ of Ĝq are unknown, we use the upper
bound s̃ output by Gen, and the lemmas of Section 2.7.1, in order to instantiate the distribu-
tions Dq, D, D̂q and D̂. In fact, since s̃ is an upper bound for both s and ŝ (where $ divides
ŝ), we simply let D̂ := D and D̂q := Dq. We instantiate D and Dq thanks to the following
lemma:

Lemma 3.3. Consider distributions Dq, D, D̂q and D̂ such that the distributions {gxq , x ←↩
Dq} and {gx, x ←↩ D} are δ-close to the uniform distribution in Gq and G respectively;
and distributions {x mod $,x ←↩ D̂q} and {x mod q$, x ←↩ D̂} are δ-close to the uniform
distribution in Z/$Z and Z/q$Z respectively. These distributions can be implemented from
the output of Gen as follows:

1. One can set Dq := D̂q and D := D̂.

2. One can choose D̂ to be the uniform distribution on {0, . . . , s̃q/(4δ)− 1}.

3. Alternatively, choosing D̂ = DZ,σ with σ = s̃q
√
| log2(δ)| allows for more efficient con-

structions as the sampled elements will tend to be smaller.

4. Likewise, one can choose D̂q = DZ,σ′ with σ′ = s̃
√
| log2(δ)|.

5. One can also, less efficiently, define D̂q = D̂.

67

CHAPTER 3. ENRICHING THE CL FRAMEWORK

6. One can induce a distribution δ-close to uniform in G from Dq and the uniform distri-
bution modulo q: the distribution {gxq · fa, x ←↩ Dq, a ←↩ Z/qZ} is statistically close to
the uniform distribution in G.

Proof. The first item is a consequence of Lemma 2.13, since the order s of Gq divides $, and
the order n of G divides q$.
Item 2 is a consequence of Lemma 2.11, which tells us that {x mod q$, x←↩ D̂} is at distance
less than 4δ$q/(4s̃q) 6 δ from U(Z/$qZ).
Item 3 follows from Lemma 2.12: the choice of DZ,σ with

σ > $q
√
| log2(δ)| > $q

√
ln(2(1 + 2δ−1))π−1

induces a distribution δ-close to U(Z/$qZ). This choice therefore trades a factor 1/2 · δ−1 for
a factor

√
| log2(δ)| compared to the previous choice. This also proves Item 4.

Since q$ divides $, D̂q can be defined from D̂ as in Item 5: the distribution {x mod $,x←↩
D̂q} is statistically close to U(Z/$Z). This choice makes sense if e.g. one does not know if
a given element u is in G or in Gq. Then if one samples exponents from D̂, the induced
distribution will be uniform, be it over Gq or over G.

Item 6 follows from the fact G ' F ×Gq and Lemma 2.14.

3.2 Hard Problems in the CL Framework
In this section, we first generalise the DCR problem to fit the CL framework with a hard
subgroup membership problem. We also present an adaptation of the standard DDH problem
to the CL framework before introducing a weaker DDH-like problem, which will be better
suited for our constructions.

3.2.1 Hard Subgroup Membership Problem

We here introduce the definition of a hard subgroup membership problem within a group with
an easy DL subgroup (HSM-CL). The HSM-CL assumption is closely related to Paillier’s DCR
assumption. Such hard subgroup membership problems are based on a long line of assumptions
on the hardness of distinguishing powers in groups. In short, DCR and HSM-CL are essentially
the same assumption but in different groups, hence there is no direct reduction between them.

We are the first to consider such an assumption within class groups. Recall that, as per
Definition 3.1, one has G ' F × Gq. The assumption is that it is hard to distinguish the
elements of Gq in G.

Definition 3.4 (HSM-CL assumption). Let λ be a positive integer and GenCL = (Gen, Solve)
be a generator for a group with an easy DL subgroup. Let D (resp. Dq) be a distribution over
the integers such that the distribution {gx, x ←↩ D} (resp. {gxq , x ←↩ Dq}) is at distance less
than δ(λ) from the uniform distribution in G (resp. in Gq), for some δ(λ) = negl(λ). Let A be
an adversary for the HSM-CL problem, its advantage is defined as:

Advhsm-cl
A (λ) def=

∣∣∣∣Pr
[
b = b? : ppCL := (s̃, g, f, gq, Ĝ, G, F,Gq)← Gen(1λ, q), |q| > λ,

x←↩ D, x′ ←↩ Dq, b←↩ {0, 1}, Z0 ← gx, Z1 ← gx
′
q ,

b? ←A(q, ppCL, Zb, Solve(.))
]
− 1/2

∣∣∣∣.
68

CHAPTER 3. ENRICHING THE CL FRAMEWORK

The HSM-CL problem is δhsm-cl-hard for GenCL if for all PPT adversary A, Advhsm-cl
A (λ) 6

δhsm-cl(λ). We say the HSM-CL assumption holds for GenCL (or the HSM-CL problem is hard
for GenCL), if the HSM-CL problem is δhsm-cl-hard for GenCL and δhsm-cl(λ) = negl(λ).

3.2.2 Decision Diffie Hellman

We here present the DDH-CL problem, which is the original problem used in [CL15] to underlie
security of their linearly homomorphic PKE scheme (recalled in Section 3.5.1). The DDH-CL
assumption is essentially the DDH assumption in the group G output by Gen.

Definition 3.5 (DDH-CL assumption). Let λ be a positive integer and GenCL = (Gen,Solve)
be a generator for a group with an easy DL subgroup. Let D be a distribution over the
integers such that the distribution {gx, x←↩ D} is at distance less than δ(λ) from the uniform
distribution in G, for some δ(λ) = negl(λ). Let A be an adversary for the DDH-CL problem,
its advantage is defined as:

Advddh-clA (λ) def=
∣∣∣∣Pr
[
b = b? : ppCL := (s̃, g, f, gq, Ĝ, G, F,Gq)← Gen(1λ, q), |q| > λ,

x, y, z ←↩ D, X = gx, Y = gy, b←↩ {0, 1}, Z0 = gxy, Z1 = gz,

b? ←A(q, ppCL, X, Y, Zb,Solve(.))
]
− 1/2

∣∣∣∣.
The DDH-CL problem is δddh-cl-hard for GenCL if for all PPT adversary A, Advddh-clA (λ) 6
δddh-cl(λ). We say the DDH-CL assumption holds for GenCL (or the DDH-CL problem is hard
for GenCL), if the DDH-CL problem is δddh-cl-hard for GenCL and δddh-cl(λ) = negl(λ).

3.2.3 Extended Decision Diffie Hellman in F

Finally, we introduce a new assumption called DDH-f . Roughly speaking, DDH-f states that
it is hard to distinguish the distributions

{(gx, gy, gxy), x, y ←↩ D} and {(gx, gy, gxyfu), x, y ←↩ D, u←↩ Z/qZ},

where D induces distributions statistically close to the uniform in G and F . In other words, as
g = f · gq, we have on the left, a Diffie-Hellman triplet in G, and on the right, a triplet whose
components in Gq form a Diffie-Hellman triplet, and whose components in F form a random
triplet: (fx, fy, fxy+u). We note that DDH-f can be seen as an instance of the Extended-DDH
(EDDH) problem defined by Hemenway and Ostrovsky in [HO12]. They demonstrate that the
hardness of the quadratic residuosity (QR) problem (which is to decide, given integers a and
N , if a is a quadratic residue modulo N), and that of the DCR problem, imply the hardness
of two different instantiations of EDDH. Our implication from HSM-CL to DDH-f somewhat
generalises their proof since DDH-f is more generic than either of the hardness assumptions
obtained from their reductions.

We will see in Section 3.5.1 that the security of the DDH-CL-based encryption scheme
of [CL15] is equivalent to the hardness of DDH-f . We further demonstrate in Section 3.5.4
that the DDH-f assumption is weaker than both the DDH-CL assumption and the HSM-CL
assumption.

Definition 3.6 (DDH-f assumption). Let λ be a positive integer and let GenCL = (Gen,Solve)
be a generator for a group with an easy DL subgroup. Let D be a distribution over the
integers such that the distribution {gx, x←↩ D} is at distance less than δ(λ) from the uniform

69

CHAPTER 3. ENRICHING THE CL FRAMEWORK

distribution in G, for some δ(λ) = negl(λ). Let A be an adversary for the DDH-f problem, its
advantage is defined as:

Advddh-fA (λ) def=
∣∣∣∣Pr
[
b = b? : ppCL := (s̃, g, f, gq, Ĝ, G, F,Gq)← Gen(1λ, q), |q| > λ,

x, y ←↩ D, u←↩ Z/qZ, X = gx, Y = gy, b←↩ {0, 1}, Z0 = gxy, Z1 = gxyfu,

b? ←A(q, ppCL, X, Y, Zb, Solve(.))
]
− 1/2

∣∣∣∣.
The DDH-f problem is δddh-f-hard for GenCL if for all PPT attacker A, Advddh-fA (λ) 6 δddh-f(λ).
We say the DDH-f assumption holds for GenCL (or the DDH-f problem is hard for GenCL), if
the DDH-f problem is δddh-f-hard for GenCL and δddh-f(λ) = negl(λ).

3.2.4 Low Order & Strong Root Assumptions

Since the order of Ĝ is unknown, some of our upcoming proofs use additional assumptions. The
first assumption, called the LO assumption, states that it is hard to find low order elements
in Ĝ. The second, called the SR assumption, states that it is hard to find roots in Ĝ of
random elements of the subgroup Gq. These assumptions are not necessary for security to go
through, however in our distributed protocols, a party P must provide proofs of knowledge
to other parties, so as to convince them of its’ honest behaviour. The combination of the LO
and SR assumptions allows to significantly improve the efficiency of protocols implementing
these proofs of knowledge. Indeed, as was explained in Section 2.8.3, the fact the order of Ĝ
is unknown is typically a bad thing when performing proofs of knowledge. This is because,
unless P ’s proof is repeated many times, it is not immediate how P can convince other parties
that it is not cheating. In Section 3.7, we provide arguments of knowledge (cf. Definition 2.24)
which need not be repeated, and demonstrate that if P were able to cheat with significant
probability, then one could use P to find a root for some given (random) element of the group,
thus violating the strong root assumption. We also need the low order assumption to make
sure that no undetected low order elements are maliciously injected in the protocols (e.g. to
extract unauthorised information).

Definition 3.7 (Low order assumption). Let GenCL = (Gen,Solve) be a generator for a group
with an easy DL subgroup. Consider positive integers λ ∈ N, and γ ∈ N. Let A be an
adversary for the γ-low order (LOγ) problem, its advantage is defined as:

AdvloγA (λ) def= Pr
[
µd = 1, 1 6= µ ∈ Ĝ, 1 < d < γ :

ppCL := (s̃, g, f, gq, Ĝ, G, F,Gq)←↩ Gen(1λ, q), |q| > λ , (µ, d)←↩A(q, ppCL, Solve(.))
]
.

The LOγ problem is εlo-hard for GenCL if for all PPT attacker A, AdvloγA (λ) 6 εlo(λ). We
say the LOγ assumption holds for GenCL (or the LOγ problem is hard for GenCL), if the LOγ

problem is εlo-hard for GenCL and εlo(λ) = negl(λ).

We now define a strong root assumption for class groups. This can be seen as a generalisa-
tion of the strong RSA assumption, introduced by Baric et al. in [BP97], which states that it is
hard, given an RSA integer N and a random s ∈ (Z/NZ)∗, to find a, b ∈ Z, b 6= ±1 satisfying
ab = s mod N . In more general terms, the assumption states that it is hard to take arbitrary
roots of random elements. We specialise this assumption for class groups where computing
square roots is easy knowing the factorisation of the discriminant [Lag80], and tailor it to our
needs by considering challenges in a subgroup.

70

CHAPTER 3. ENRICHING THE CL FRAMEWORK

Definition 3.8 (Strong root assumption for class groups). Let λ be a positive integer and
let GenCL = (Gen, Solve) be a generator for a group with an easy DL subgroup. Let A be an
adversary for the strong root (SR) problem in class groups, its goal is to output a positive
integer e 6= 2k, k ∈ N, and X ∈ Ĝ, s.t. Y = Xe, given a random Y in Gq, the output of
Gen and access to Solve(.). Precisely, let Dq be a distribution over the integers such that the
distribution {gxq , x ←↩ Dq} is at distance less than δ(λ) from the uniform distribution in Gq,
for some δ(λ) = negl(λ). A’s advantage is defined as:

AdvsrA(λ) def= Pr
[
Y = Xe, X ∈ Ĝ, e 6= 2k; e, k ∈ N :

ppCL := (s̃, g, f, gq, Ĝ, G, F,Gq)←↩ Gen(1λ, q),
|q| > λ, y ←↩ Dq;Y ← gyq , (e,X)←↩A(q, ppCL, Y, Solve(.))

]
.

The SR problem for class groups is εsr-hard for GenCL if for any PPT attacker A, AdvsrA(λ) 6
εsr(λ). We say the SR assumption holds for GenCL (or the SR problem is hard for GenCL), if
the SR problem is εsr-hard for GenCL and εsr(λ) = negl(λ).

Hardness of the LO and SR Assumptions in Class Groups

Recent uses of similar assumptions. We first note that in the generic group model (for
groups of unknown order), both assumptions were proven to be hard in [BBF19]. For our
applications, we will use the SR assumption and the LO assumption in the context of class
groups. These assumptions are not completely novel in this setting: Damg̊ard and Fujisaki
[DF02] explicitly consider variants of these assumptions in this context. Then, Lipmaa used a
strong root assumption in class groups to build accumulators without trusted setup in [Lip12].
Recently, an interactive variant of the SR assumption was used, still in the context of class
groups, by Wesolowski to build verifiable delay functions without trusted setup [Wes19].

Both the LO and SR assumptions were also used by Bünz et al. in the context of class
groups [BFS20]. They call these assumptions the order assumption and the 2-strong RSA
assumption, where the ‘2’ refers to the fact computing e-th roots, where e is a power 2, is easy,
and hence dos not break the assumption. They use these assumptions to devise a polynomial
commitment scheme in groups of unknown order with efficient verifier time and small proof
sizes. The assumptions serve similar purposes to our use of them, ensuring that if a prover
can cheat with significant probability, then one can leaverage the prover to break one of the
assumptions. Bünz et al. [BFS20] also use an adaptive root assumption, this assumption was
introduced and used in the context of class groups by Wesolowski [Wes19] to build verify
delay functions, then re-formulated by Boneh et al. [BBF18], and has since been used by e.g.
[LM19] to build succinct non-interactive arguments of knowledge (SNARK) and [BBF18,Pie19]
to build verifiable delay functions. The adaptive root assumption is dual to the strong root
assumption, as it states that it is hard to take random roots of arbitrary group elements;
i.e., an adversary, having chosen a group element w, is given a random prime ` and must
output a group element u satisfying u` = w 6= 1. Bünz et al. [BFS20] further demonstrate
that the adaptive root assumption implies the low order assumption. As a final note Lai et al.
[LM19] suggested a public coin setup for class groups so that the adaptive root assumption is
conjectured to hold in the resulting group.

On the hardness of these assumptions. In the following, we advocate the hardness of
these assumptions in the context of class groups.

The root problem and its hardness was considered in [BH01, BBHM02] in the context of
class groups to design signature schemes. It is similar to the RSA problem: the adversary is

71

CHAPTER 3. ENRICHING THE CL FRAMEWORK

not allowed to choose the exponent e. These works compare the hardness of this problem with
the problem of computing the group order and conclude that there is no better known method
to compute a solution to the root problem than to compute the order of the group.

As mentioned previously the strong root assumption is a generalisation of the strong RSA
assumption. Again, the best known algorithm to solve this problem is to compute the order of
the group to be able to invert exponents. For strong RSA this means factoring the modulus. For
the SR problem in class groups, this means computing the class number. Best known algorithms
for this problem have worse complexity than those for factoring integers (cf. Sections 2.4.2
and 2.6), and in our applications, discriminants are chosen such that this problem is intractable.

Concerning the LO assumption, we will need the LOγ problem to be hard in Ĝ, where γ
can be as big as 2128. Note that in our instantiation, the discriminant is chosen such that the
2−Sylow subgroup is isomorphic to Z/2Z. It is well known that elements of order 2 can be
computed from the (known) factorisation of ∆q. However, we work with the odd part, which
is the group of squares in this context, so we do not take this element into account.

Let us see that the proportion of such elements of low order is very low in the odd part. As
noted in Section 2.6, from the Cohen Lenstra heuristics [CL84] the odd part of a class group
Cl(O∆) of an imaginary quadratic field is cyclic with probability 97.75%; and it is conjectured
[HS06] that the probability an integer d divides h(O∆) is less than:

1
d

+
1

d log d
.

As a consequence, if the odd part of Cl(O∆) is cyclic then, denoting ϕ Euler’s totient function,
the expected number of elements of order less than γ is less than:∑

d6γ

(
1
d

+
1

d log d

)
ϕ(d),

which can be upper bounded by 2γ. For 128 bits of security, our class number will have around
913 bits, so the proportion of elements of order less than 2128 is less than 2−784.

Moreover, if the odd part of the class group is non cyclic, it is very likely that it is of the
form Z/n1Z⊕Z/n2Z where n2|n1 and n2 is very small, hence it should behave as in the case
where it were cyclic.

There have been intense efforts on the construction of families of discriminants such that
there exist elements of a given small order p or with a given p−rank (number of cyclic factors
in the p−Sylow subgroup). However, these families are very sparse and will be reached by our
generation algorithm of the discriminant only with negligible probability. The basic idea of
these constructions is to build a discriminant ∆ in order to obtain solutions of a Diophantine
equation that gives m and the representation of a non principal ideal I of norm m such that
Ip is principal, and I has order p in Cl(O∆) (see eg [Bue76] or [Bel04] for more references).
Solving such a norm equation for a fixed discriminant was mentioned as a starting point for
an attack in [BBF18] combined with the Coppersmith method, but no concrete advances on
the problem have been proposed.

3.2.5 Summary of Assumptions in the CL Framework

In Table 3.1 we provide a summary of the assumptions from the CL framework presented in this
section. Algorithm GenCL = (Gen,Solve) is a generator for a group with an easy DL subgroup;
λ and γ are positive integers, and we let ppCL := (s̃, g, f, gq, Ĝ, G, F,Gq) ← Gen(1λ, q) for
some prime q > λ. Furthermore A denotes a PPT adversary for the considered problem. We

72

CHAPTER 3. ENRICHING THE CL FRAMEWORK

assume A is always given as input ppCL, distributions D and Dq, and has access to the Solve
algorithm.

HSM-CL DDH-CL DDH-f
Challenge x←↩ D, x′ ←↩ Dq x, y, z ←↩ D, x, y ←↩ D,

set up b←↩ {0, 1}, X = gx, Y = gy, u←↩ Z/qZ,
Z0 ← gx, b←↩ {0, 1}, X = gx, Y = gy,

Z1 ← gx
′
q Z0 ← gxy, b←↩ {0, 1},

Z1 ← gz Z0 = gxy, Z1 = gxyfu

A’s input Zb X,Y, Zb X,Y, Zb
A’s winning output b∗ such that b = b∗ b∗ such that b = b∗ b∗ such that b = b∗

LOγ SR
Challenge set up − y ←↩ Dq, Y ← gyq

A’s input − Y

A’s winning µ ∈ Ĝ, µ 6= 1 and d e 6= 2k ∧ e, k ∈ N and X ∈ Ĝ
output such that 1 < d < γ and µd = 1 such that Y = Xe

Table 3.1: Summary of assumptions in the CL framework

3.3 Projective Hash Functions from the CL Framework
Using the formalism of [CS02], we can now build projective hash functions from the CL frame-
work. We define a number of both new and existing properties for PHFs. To help understand
these technical notions, we illustrate them with running examples arising from the traditional
DDH assumption in finite fields, as well as from our HSM-CL and DDH-f assumptions of Sec-
tion 3.2. As noted in the chapter introduction an instantiation from the DCR assumption could
also be made to satisfy all our properties. Such an instantiation would very much resemble our
HSM-CL based PHFs.

The definitions we provide are for a general class of group-theoretic language membership
problems. Moreover we consider the more general case where elements of the considered groups
may not be efficiently recognisable, thus allowing for a wider range of instantiations.

To build PHFs one starts with an instance of a subgroup membership problem.

3.3.1 Subgroup Membership Problems

Definition 3.9 ([CS02]). Let λ be a positive integer. A generator for a δL-hard subgroup
membership problem is a PPT algorithm GenSM which on input 1λ returns the description of
a subgroup membership problem:

SM := (X̂,X, L̂,W,R), where

• X̂ is a finite Abelian group whose elements are recognisable;

• X ⊆ X̂ is a subgroup of X̂ (whose elements may not be recognisable);

• L̂ ⊂ X̂ is a subgroup of X̂, and L := X ∩ L̂;

73

CHAPTER 3. ENRICHING THE CL FRAMEWORK

• R ⊂X×W is a binary relation. For x ∈ L and w ∈W, w is a witness for x if (x,w) ∈ R.
The relation R is efficiently samplable: one samples a random x ∈ L along with a witness
w ∈ W for x, this implicitly defines a way to sample random elements of L. We denote
this sampling (x,w)← R;

• It is hard to distinguish random elements of L from those of X. Precisely δL is the
maximal advantage of any PPT adversary in solving this problem.

If X̂ = X (and hence L̂ = L) we simply denote SM := (X,L,W,R).

Remark. In this definition “random” and “samplable” mean for a distribution that is to be
defined when instantiating the subgroup membership problem.

Remark. In the following running examples, in particular those arising from HSM-CL and
DDH-f where X̂ 6= X, our choices for X̂,X, L̂,L are not intuitive. These choices will become
clearer latter in our work, namely when we introduce decomposability (cf. Definition 3.18).
Indeed in our upcoming proofs we will need X̂ (resp. X) to be isomorphic to the direct
product of L̂ (resp. L) and the subgroup generated by some element Υ̂ ∈ X̂ (resp. Υ ∈ X).
This decomposability allows a clear separation between the information that must remain
hidden from adversaries in order to ensure security, and that which the cryptosystem may
leak without incurring significant harm to the security of the scheme. The values of Υ and Υ̂
depend on the PHFs which will be defined in Sections 3.3.2 and 3.3.3.

Running Example 1 – DDH

Let (G, g, q)← GenDL(1λ) as described in Section 2.4.1, and g0, g1 ←↩ G. Here X̂ = X and we
set

X := G2.

The subgroup L̂ = L of X is that generated by (g0, g1), i.e.

L := 〈(g0, g1)〉.

A witness for (x0, x1) ∈ L is w ∈ Z/qZ such that (x0, x1) = (gw0 , g
w
1); we denote

Rddh := {((x0, x1), w) ∈ ((L × Z/qZ) | (x0, x1) = (gw0 , g
w
1)}.

Thus SMddh := (G2, 〈(g0, g1)〉,Z/qZ,Rddh). One samples random elements of L, together with
the corresponding witness, by sampling w ←↩ U(Z/qZ), and computing (x0, x1) := (gw0 , g

w
1).

Sampling on G2 is done1 by sampling r, r′ ←↩ U(Z/qZ), and outputting (gr0, g
r
1)� (1, gr

′
1).

It is clear that this defines a subset membership problem, and that the hardness of this
subset membership problem is implied by the hardness of the DDH problem in G. If the DDH
problem is δddh-hard for GenDL, then SMddh is δddh-hard.

Running Example 2 – HSM-CL

Consider a generator GenCL of a HSM-CL group with an easy DL subgroup (cf. Definition 3.4),
which, on input 1λ and a µ-bit prime q (for µ > λ), outputs (s̃, g, f, gq, Ĝ, G, F,Gq). We set

X̂ := Ĝ, X := G = 〈g〉 and L̂ := Ĝq.

1This choice, which may seem convoluted when one could output (gr0 , g
r′
1), is for consistency with the notion

of decomposability introduced in Section 3.3.5.

74

CHAPTER 3. ENRICHING THE CL FRAMEWORK

Then
L := X ∩ L̂ = Gq = 〈gq〉.

A witness for x ∈ L is w ∈ Z such that x = gwq ; we denote

Rhsm-cl := {(x,w) ∈ Gq × Z | x = gwq }.

Thus SMhsm-cl := (Ĝ,G, Ĝq,Z,Rhsm-cl).
Witnesses are sampled from Dq chosen as per Lemma 3.3. This induces a distribution

δ-close to uniform on Gq. Sampling in G is done by sampling w ←↩ Dq, u ←↩ Z/qZ, and
outputting gwq f

u, this induces a distribution δ-close to uniform on G (cf. Lemma 3.3). It is
clear from Definition 3.4 that if the HSM-CL problem is δhsm-cl-hard for GenCL then SMhsm-cl

is δhsm-cl-hard.

Comparison with DCR. Though we do not detail a running example arising from the DCR
assumption, such an instantiation would share many similarities with our running example
from HSM-CL. Indeed, if we denote SMdcr the subgroup membership problem arising from
DCR, using the notations of Fig. 2.1, one essentially substitutes f in SMhsm-cl for the generator
g = (1 + N) of the subgroup of order N in SMdcr; and sets L̂ to be the subgroup of N -th
powers in Z/N2Z.

Running Example 3 – DDH-f

Consider a generator GenCL of a DDH-f group with an easy DL subgroup (cf. Definition 3.6),
which on input 1λ and a µ-bit prime q (for µ > λ), outputs (s̃, g, f, gq, Ĝ, G, F,Gq). Sample
α←↩ D satisfying α 6= 1, and set h := gα. Let

X̂ := Ĝ2 and X := 〈(g, h), (1, f)〉.

Let us denote Fα := 〈(f, fα)〉. Then we set

L̂ := 〈(Ĝq)2, Fα〉 = {(z0f
r, z1f

αr)|z0, z1 ∈ Ĝq ; r ∈ Z/qZ}.

Then, by intersecting X and L̂, we obtain L. Observe that letting z′0 ← z0g
−r
q , z′1 ← z1g

−αr
q ∈

Ĝq one can rewrite L̂ = {(gr, hr)� (z′0, z
′
1)|z′0, z′1 ∈ Ĝq ; r ∈ Z/qZ}. Now since Ĝ ' Ĝq × F , it

is clear that:
L := 〈(g, h)〉.

A witness for (x0, x1) ∈ L is w ∈ Z s.t. (x0, x1) = (gw, hw); we denote

Rddh-f := {((x0, x1), w) ∈ (G2 × Z) | (x0, x1) = (gw, hw)}.

Thus SMddh-f := (Ĝ2, 〈(g, h), (1, f)〉, 〈(Ĝq)2, Fα〉,Z,Rddh-f).
Witnesses are sampled from a distribution D chosen as per Lemma 3.3. This induces

a distribution δ-close to U(G). One similarly samples random elements of X by sampling
w ←↩ D, u ←↩ Z/qZ, and outputting (gw, hwfu). It is clear from Definition 3.6 that if the
DDH-f problem is δddh-f-hard for GenCL then SMddh-f is δddh-f-hard.

3.3.2 Projective Hash Functions

We here recall the definition of projective hash functions, these where first introduced in [CS02]
to build efficient ind-cpa and ind-cca-secure public key encryption schemes. Indeed, as we will

75

CHAPTER 3. ENRICHING THE CL FRAMEWORK

see in Section 3.5, PHFs possessing a specific property called smoothness allow for the construc-
tion of ind-cpa-secure public key encryption schemes. Using a second extended projective hash
function (cf. Definition 3.22), one can further guarantee ciphertext integrity, and thereby attain
ind-cca-security. We build upon the idea mentioned in [CS02], of a projective hash function for
a generalised subset membership problem, since this definition takes account of instantiations
where X (X̂, and elements of X are not efficiently recognisable. We formally define this
intuition by introducing two new algorithms p̂rojkg and ̂projhash. These algorithms will only
be used to prove security of our constructions, so as to quantify the maximum information an
adversary can learn. As such they need not be efficiently computable.

Definition 3.10. Let λ be a positive integer. Consider a generator GenSM for a subgroup
membership problem, and an instance SM := (X̂,X, L̂,W,R) ← GenSM(1λ). A projective
hash function (PHF) for the subgroup membership problem SM is a tuple of algorithms
H := (hashkg, p̂rojkg, projkg, hash, ̂projhash, projhash), where all algorithms have as implicit
input the description SM of the subset membership problem, and:

• hashkg(SM) is a PPT algorithm which on input the description of SM, outputs a hashing
key hk in some set Khk;

• p̂rojkg(hk) is a deterministic algorithm which on input hk ∈ Khk outputs a projection key
ĥp. The image of Khk through p̂rojkg is denoted K

ĥp
;

• projkg(hk) is a DPT algorithm which on input hk ∈ Khk outputs a public projection
key hp, such that for hk ∈ Khk, hp is a fixed deterministic function of the output of
p̂rojkg(hk). The image of Khk through projkg is denoted Khp;

• hash(hk, x) is a DPT algorithm which on input hk ∈ Khk, x ∈ X̂ outputs the hash value
hash(hk, x). The image of X̂ through hash is a finite Abelian group called the set of hash
values and is denoted Π;

• ̂projhash(ĥp, x) is a deterministic algorithm which on input ĥp ∈ K
ĥp

and x ∈ L̂, outputs

the hash value ̂projhash(ĥp, x) in Π;

• projhash(hp, x, w) is a DPT algorithm which on input hp ∈ Khp, x ∈ L and the corre-
sponding witness w ∈W, outputs the hash value projhash(hp, x, w) in Π.

Correctness requires that for all λ ∈ N, any SM ← GenSM(1λ), any hk← hashkg(SM), ĥp←
p̂rojkg(hk) and hp← projkg(hk), it holds that (1) for any x ∈ L̂, ̂projhash(ĥp, x) = hash(hk, x);
and (2) for any (x,w) ∈ R, projhash(hp, x, w) = hash(hk, x).
If X̂ = X, then p̂rojkg = projkg and ̂projhash = projhash, so we denote H := (hashkg, projkg,
hash, projhash).

Remark. In upcoming running examples (cf. Section 3.3.3) we will see that the choices of L̂
and L are tightly linked to the definitions for algorithms p̂rojkg, projkg, ̂projhash and projhash,
since given the output of p̂rojkg (resp. projkg) one must be able to evaluate algorithm ̂projhash
(resp. projhash) over any (x,w) ∈ R (resp. x ∈ L̂).

3.3.3 Homomorphic Properties

If PHFs – derived from Abelian groups – satisfy some natural homomorphic properties, they
allow for the construction of advanced cryptographic primitives. In particular we will need
Definitions 3.11 and 3.13, for correctness of our constructions.

76

CHAPTER 3. ENRICHING THE CL FRAMEWORK

Definition 3.11 ([HO09]). Recall that Π is the set of hash values, and that (X̂, ·) and (Π, ·)
are Abelian groups. A PHF H is homomorphic if for all hk ∈ Khk, and u1, u2 ∈ X̂, one has
hash(hk, u1) · hash(hk, u2) = hash(hk, u1 · u2). That is to say hash(hk, ·) is a homomorphism for
each hk.

If H is homomorphic and correct then clearly for ĥp← p̂rojkg(hk) (resp. hp← projkg(hk)) the
function ̂projhash (resp. projhash) is linearly homomorphic with respect to elements u1, u2 ∈ L̂

(resp. u1, u2 ∈ L). Note however that this holds for hp ∈ Khp, where Khp may not be efficiently
recognisable. We define the notion of a homomorphically-extended PHF which ensures the
homomorphic properties of the PHF hold for any public projection key sampled from an
efficiently recognisable set. This property will be of particular interest for our multi-party
protocols, as it allows us to avoid expensive zero-knowledge proofs that a public key is well
formed.

Definition 3.12 (Homomorphically extended PHF). Consider a PHF H with set of public
projection keys Khp. We say H is homomorphically extended if H is homomorphic and there
exists an efficiently recognisable space K ′hp ⊇ Khp such that for any hp′ ∈ K ′hp, projhash(hp

′, ·)
is a homomorphism (respectively to its inputs in L).

Definition 3.13 ([BBL17]). A PHF H is key homomorphic if (Khk,+) and (Π, ·) are Abelian
groups, and for all x ∈ X̂ and hk0, hk1 ∈ Khk, one has hash(hk0, x) · hash(hk1, x) = hash(hk0 +
hk1, x). That is to say hash(·, x) is a homomorphism for each x.

Running Example 1 – DDH-based PHF

Recall that for SMddh it holds that X̂ = X, L̂ = L and consequently p̂rojkg = projkg
and ̂projhash = projhash. One defines Hddh from SMddh as follows. The hash key space is
Khk := (Z/qZ)2. The hashkg algorithm samples keys uniformly from Khk. The projective hash
function Hddh defines keyed hash functions with co-domain Π := G, such that:

hash : Z/qZ2 ×G2 → G.
((κ0, κ1), (x0, x1)) 7→ xκ00 xκ11

Algorithm projkg takes values in Khp := G and is defined as:

projkg : (Z/qZ)2 → G.
(κ0, κ1) 7→ gκ00 gκ11

For hp← gκ00 gκ11 ∈ G, and ((x0, x1), w) ∈ Rddh, one defines:

projhash(hp, (x0, x1), w) := hpw,

which is equal to gw·κ00 gw·κ11 = xκ00 xκ11 = hash(hk, (x0, x1)); hence correctness holds.

Homomorphic properties: let the group operation for G2 be coordinate-wise multiplication.
Then ∀(κ0, κ1) ∈ Z/qZ2 and x0, x1, x2, x3 ∈ G, hash((κ0, κ1), (x0, x1))·hash((κ0, κ1), (x2, x3)) =
(x0 ·x2)κ0 · (x1 ·x3)κ1 = hash((κ0, κ1), (x0 ·x2, x1 ·x3)) = hash((κ0, κ1), (x0, x1)� (x2, x3)). Thus
Hddh is homomorphic. The homomorphic properties of G readily imply that Hddh is also key
homomorphic.

77

CHAPTER 3. ENRICHING THE CL FRAMEWORK

Running Example 2 – HSM-CL-based PHF

We define Hhsm-cl from SMhsm-cl as follows. The hash key space is Khk := Z. The hashkg
algorithm samples hash keys from the distribution D̂ = D as per Lemma 3.3. Hhsm-cl defines
keyed hash functions with co-domain Π := Ĝ, such that:

hash : Z× Ĝ → Ĝ.
(hk, x) 7→ xhk

Functions p̂rojkg and projkg, which output values in K
ĥp

:= Z/$Z and Khp := Gq are defined
as:

p̂rojkg : Z → Z/$Z
hk 7→ hk mod $

and projkg : Z → Gq.
hk 7→ ghkq

Consider any hk ∈ Z, and ĥp ← p̂rojkg(hk). For any z ∈ Ĝq (note that the order of z divides
the group exponent $), we define:

̂projhash(ĥp, z) := zĥp,

which is equal to hash(hk, z). For hp← projkg(hk), x ∈ Gq with witness w ∈ Z we define:

projhash(hp, x, w) := hpw,

which is equal to hash(hk, x), hence correctness holds.

Homomorphic properties: Z is an additive Abelian group, Ĝ is a multiplicative finite Abelian
group. This readily implies that Hhsm-cl is homomorphic and key homomorphic. Furthermore,
setting K ′hp := Ĝ which contains G, Hhsm-cl is also homomorphically extended.

Running Example 3 – DDH-f-based PHF

We define Hddh-f from SMddh-f as follows. The hash key space is Khk := Z2. The hashkg
algorithm samples two elements from distribution D̂ = D as per Lemma 3.3. The hashing
algorithm has co-domain Π := Ĝ, and is defined as:

hash : Z2 × Ĝ2 → Ĝ.
((κ0, κ1), (x0, x1)) 7→ xκ00 xκ11

Recall that in SMddh-f we defined h := gα. Functions p̂rojkg and projkg, which take values in
K
ĥp

:= (Z/$Z)2 × Z/qZ and Khp := G are defined as:

p̂rojkg : Z2 → (Z/$Z)2 × Z/qZ
(κ0, κ1) 7→ (κ0 mod $,κ1 mod $,κ0 + ακ1 mod q)

and
projkg : Z2 → G.

(κ0, κ1) 7→ gκ0hκ1

Consider any hk := (κ0, κ1) ∈ Z2. Let κ̂0 := κ0 mod $; κ̂1 := κ1 mod $; ι := κ0 + ακ1 mod q
and ĥp := (κ̂0, κ̂1, ι) ∈ Kĥp. By definition of L̂ = {(z0f

r, z1f
αr)|z0, z1 ∈ Ĝq ; r ∈ Z/qZ}, for any

(y0, y1) ∈ L̂ there exist unique z0, z1 ∈ Ĝq and r ∈ Z/qZ such that (y0, y1) = (z0, z1)�(f r, fαr).
We define

̂projhash(ĥp, (y0, y1)) := zκ̂00 zκ̂11 (f r)ι,

78

CHAPTER 3. ENRICHING THE CL FRAMEWORK

and insist on the fact that ̂projhash is not (and need not be) efficiently computable. Since the
order of z0 and z1 divide the group exponent $ of Ĝq, it holds that ̂projhash(ĥp, (y0, y1)) =
hash(hk, (y0, y1)). For hp ∈ Khp and ((x0, x1), r) ∈ Rddh-f we define:

projhash(hp, (x0, x1), r) := hpr,

which is equal to hash(hk, (x0, x1)), hence correctness holds.

Homomorphic properties: Let the group operation for Ĝ2 be coordinate-wise multiplication.
Then ∀(κ0, κ1) ∈ Z2, and y0, y1, y2, y3 ∈ Ĝ, hash((κ0, κ1), (y0, y1)) · hash((κ0, κ1), (y2, y3)) =
hash((κ0, κ1), (y0, y1)� (y2, y3)). Thus Hddh-f is homomorphic, and setting K ′hp := Ĝ, it is also
homomorphically extended. Moreover Hddh-f is key homomorphic.

3.3.4 Smoothness

In our upcoming construction for ind-cpa-secure PKE from PHFs (cf. Fig. 3.2) one masks
the sensitive information (encoded in a subgroup F ⊆ Π) with an evaluation of the hash
function in a random point x ∈ L. By the hardness of the subgroup membership problem,
the distributions induced by sampling a random element of X\L or a random element of L
and then computing hash(hk, x) are computationally indistinguishable, so replacing the mask
with the hash of some random point x ∈X\L should go unnoticed. To ensure this hash value
indeed masks the message, thus ensuring confidentiality, it must hold that for a randomly
sampled x ∈ X\L, the projection of hash(hk, x) onto F be uniformly distributed over F
knowing p̂rojkg(hk). A PHF satisfying this property is smooth over X on F .

Definition 3.14 ([CS02]). Let λ be a positive integer. Consider a generator GenSM for a
subgroup membership problem, and SM := (X̂,X, L̂,W,R) ← GenSM(1λ). Consider the
associated PHF H, whose hash values belong to a finite Abelian group Π. Let F be a subgroup
of Π. We say that H is δs-smooth over X on F if the following distributions are δs-close

{(x, p̂rojkg(hk), hash(hk, x))|hk← hashkg(SM), x←↩X\L}

and
{(x, p̂rojkg(hk), π′ · hash(hk, x)|hk← hashkg(SM), x←↩X\L, π′ ←↩ U(F)}.

If δs(λ) = negl(λ), then H is said to be smooth over X on F .

Running Example 1 – DDH

As demonstrated in [CS02, Section 8.1.1] the projective hash function Hddh is 0-smooth.

Lemma 3.15. Hddh is 0-smooth (over G on G), i.e. for κ0, κ1 ←↩ Z/qZ, α ∈ Z/qZ, and
β ∈ Z/qZ∗, the following distributions are identical:

U =
{

(gα0 , g
α+β
1), gκ00 gκ11 , gγ1 | γ ←↩ Z/qZ

}
and V =

{
(gα0 , g

α+β
1), gκ00 gκ11 , gακ00 g

(α+β)κ1
1

}
.

Running Example 2 – HSM-CL

Recall that F = 〈f〉 is the subgroup of G of order q in which the discrete logarithm problem
is easy; that G ' Gq × F where Gq = 〈gq〉 is of order s; and that $ is the group exponent of
Ĝq, as such, $ divides s.

In Lemma 3.16 we demonstrate that for an appropriate choice of D̂, from which hashing
keys are sampled, the projective hash function Hhsm-cl is smooth over G on F .

79

CHAPTER 3. ENRICHING THE CL FRAMEWORK

Lemma 3.16 (smoothness). If D̂ is a distribution δ-close to U(Z/q$Z), then Hhsm-cl is δs-
smooth over G on F , with δs 6 2δ.

Proof. For x ∈ G\Gq, there exist a ∈ Z/sZ and b ∈ (Z/qZ)∗ s.t. x = gaq f
b. Thus, for

hk ←↩ D̂, the task is to evaluate the statistical distance between distributions {gaq f b, hk mod
$, ga·hkq f b·hk+γ |γ ←↩ U(Z/qZ)} and {gaq f b, hk mod $, ga·hkq f b·hk}. Clearly it suffices to study the
distance between the third coordinates of both distributions, given the two first coordinates,
i.e, knowing a mod s, b mod q, and hk mod $.

Given this information the value of ga·hkq is fixed, since the order s of gq divides $. Hence
we evaluate the statistical distance between the distribution followed by Y := b ·hk mod q and
U(Z/qZ), conditioned on the knowledge of a mod s, b mod q, and hk mod $. As hk is sampled
from D̂, which is δ-close to U(Z/q$Z), and since gcd(q,$) = 1, from Lemma 2.15 it holds
that even knowing hk mod $ the distribution followed by hk mod q is 2δ-close to U(Z/qZ).
Thus the distance between U(Z/qZ) and the distribution followed by Y is upper bounded by
2δ, which concludes the proof.

Running Example 3 – DDH-f

In Lemma 3.17 we demonstrate that for an appropriate choice of D̂, from which hashing key
components are sampled, the projective hash function Hddh-f is smooth over G on F .

Lemma 3.17 (smoothness). If D̂ is a distribution δ-close to U(Z/q$Z), then Hddh-f is δs-
smooth over G on F , with δs 6 2δ.

Proof. For (y0, y1) ∈ (〈(g, h), (1, f)〉)\〈(g, h)〉, there exist a ∈ Z and b ∈ (Z/qZ)∗ s.t. (y0, y1) =
(ga, haf b). Thus, for κ0, κ1 ←↩ D̂, the task is to evaluate the statistical distance between distri-
butions {(ga, haf b), (κ0 mod $,κ1 mod $,κ0 + ακ1 mod q), ga·κ0ha·κ1f b·κ1+γ |γ ←↩ U(Z/qZ)}
and {(ga, haf b), (κ0 mod $,κ1 mod $,κ0 + ακ1 mod q), ga·κ0ha·κ1f b·κ1}. It suffices to study
the distance between the third coordinates of both distributions, given the two first coordi-
nates, i.e knowing a mod n, b mod q, κ0 mod $, κ1 mod $ and κ0 + ακ1 mod q. Given this
information, since s divides $ and n = qs, the value κ0 + ακ1 mod n is also known. Hence
ga·κ0ha·κ1 = ga(κ0+ακ1) is fixed information theoretically, and so it suffices to compare the
distribution followed by the random variable Y := b · κ1 mod q and the uniform distribu-
tion modulo q, conditioned on the knowledge of a mod n, b mod q, κ0 mod $, κ1 mod $ and
κ0 + ακ1 mod q.

Let us denote π0 := κ0 + ακ1 mod q, which is fixed given by the second coordinate. Since
κ0, κ1 are sampled from D̂, knowing π0 the joint distribution of (κ0 mod q, κ1 mod q) is:

{(π0 − αk, k)|k ←↩ D̂}.

Thus the value of κ0 mod q is fixed by that of κ1 mod q. Now let us consider the additional
information on (κ0 mod q, κ1 mod q) fixed by the knowledge of κ0 mod $, κ1 mod $. As D̂

is at statistical distance δ from U(Z/q$Z), and gcd(q,$) = 1, from Lemma 2.15 it holds
that even knowing κ1 mod $ the distribution followed by κ1 mod q is 2δ-close to U(Z/qZ).
Finally since b 6= 0 mod q, Y follows a distribution 2δ-close to U(Z/qZ), which concludes the
proof.

3.3.5 Decomposability

We introduce the notion of a decomposable projective hash function, this property states that
the domain of hash is the direct product of the language and some cyclic subgroup. Since –

80

CHAPTER 3. ENRICHING THE CL FRAMEWORK

given the projection key – one can publicly compute hash values over elements in the language,
decomposability allows to have a clear separation between the part of a given hash value which
is predictable (whose pre-image is in the language), and the part which must appear random
for security to hold.

Definition 3.18. Let SM := (X̂,X, L̂,W,R) be a subgroup membership problem, and con-
sider the associated PHF H. We say that H is (Υ̂,Υ, F)-decomposable if the co-domain Π of
hash is a finite Abelian group which contains a cyclic subgroup F , and there exist Υ̂ ∈ X̂ and
Υ ∈X s.t.:

• X ' L × 〈Υ〉;

• X̂ ' L̂ × 〈Υ̂〉;

• ∀hk ∈ Khk it holds that hash(hk,Υ) ∈ F and hash(hk, Υ̂) ∈ F .

Notation. If X̂ = X or Υ̂ = Υ, we simply say H is (Υ, F)-decomposable.

Remark. By sampling (x̃, w̃) ← R, y ←↩ 〈Υ〉 \ {1}, and outputting x := x̃ · y one induces a
sampling on X\L. We denote this sampling x←↩X\L.

For a homomorphic and (Υ̂,Υ, F)-decomposable PHF, we have another formulation for
smoothness which is easier to handle, and more precise in the sense that we need only consider
the distribution of elements in the subgroup 〈Υ〉 and their image by hash, rather than that of
elements in the group X.

Lemma 3.19. A homomorphic and (Υ̂,Υ, F)-decomposable PHF is δs-smooth over X on F
if the following distributions are δs-close

{(y, p̂rojkg(hk), hash(hk, y))|hk← hashkg(SM), y ←↩ 〈Υ〉}

and
{(y, p̂rojkg(hk), π′ · hash(hk, y))|hk← hashkg(SM), y ←↩ 〈Υ〉, π′ ←↩ U(F)}.

Running Example 1 – DDH

The group G is cyclic, and a trivial subgroup of itself, so we take F := G, and set:

Υ := (1, g1),

such that G2 = 〈(1, g1), (g0, g1)〉, and it holds that:

G2 ' 〈(1, g1)〉 × 〈(g0, g1)〉.

Clearly ∀hk ∈ (Z/qZ)2, hash(hk, (1, g1)) ∈ G. For any (y0, y1) ∈ G2, we have y0 = gw00
and y1 = gw11 . Denoting x0 := y0 = gw00 , x1 := gw01 , and υ := w1 − w0 ∈ Z/qZ it holds
that ((x0, x1), w0) ∈ RDDH; (y0, y1) = (1, g1)υ � (x0, x1); and given (y0, y1) such values of
(x0, x1), w0, υ are unique modulo q. Hence:

Hddh is ((1, g1), G)-decomposable.

81

CHAPTER 3. ENRICHING THE CL FRAMEWORK

Running Example 2 – HSM-CL

Recall that F denotes the cyclic subgroup of Ĝ generated by f , and by definition:

Ĝ ' Ĝq × F and G ' Gq × F.

Moreover ∀hk ∈ Z, hash(hk, f) = fhk ∈ F . Thus we set:

Υ̂ = Υ := f,

and consequently:

Hhsm-cl is (f, F)-decomposable.

Running Example 3 – DDH-f

Recall that F denotes the cyclic subgroup of Ĝ generated by f , and by definition:

Ĝ ' Ĝq × F and G ' Gq × F.

Further recall that X̂ = Ĝ2 and that L̂ := {(z0f
r, z1f

αr)|z0, z1 ∈ Ĝq ; r ∈ Z/qZ}. It holds
that:

X̂ ' L̂ × 〈(1, f)〉.

Similarly X = 〈(g, h), (1, f)〉 and L = 〈(g, h)〉, so:

X ' 〈(g, h)〉 × 〈(1, f)〉.

Moreover for all (κ0, κ1) ∈ Z2, hash((κ0, κ1), (1, f)) = fκ1 ∈ F . Thus we set:

Υ̂ = Υ := (1, f),

and consequently:

Hddh-f is ((1, f), F)-decomposable.

3.4 Public Key Encryption from Projective Hash Functions
In this section we recall generic constructions for building a public key encryption schemes
secure against passive and active adversaries from projective hash functions. The generic con-
struction to attain ind-cca-security is an adaptation of the Cramer-Shoup [CS02] generic con-
struction, while that attaining ind-cpa-security is a folklore simplification thereof. We have
adapted these constructions so that plaintext messages are encoded in the exponent of f , a
generator for the subgroup F on which the considered PHF is assumed to be smooth. If the
PHF also satisfies some of the homomorphic properties of Section 3.3.3 we obtain ind-cpa-secure
schemes which are linearly homomorphic.

In order to attain security against active adversaries, we recall the definition of extended
projective hash functions (in Section 3.4.3), as these are required to ensure ciphertext integrity.
Finally we provide instantiations for extended projective hash functions from our running
examples.

82

CHAPTER 3. ENRICHING THE CL FRAMEWORK

3.4.1 Security against Passive Adversaries

In Fig. 3.2 we provide a folklore generic construction for ind-cpa-secure PKE from projective
hash functions. This construction is a simplification of the ind-cca-secure generic construction
put forth in [CS02] (cf. Section 3.4.2). The high level idea is to mask the confidential message
m with the hash of a random value for some projective hash function H. The hardness of the
subset membership problem underlying H and the smoothness of H ensure that the hash acts
as a one time pad and statistically hides the message.

Requirements for the projective hash function. Let SM = (X̂,X, L̂,W,R) be a sub-
group membership problem. Consider the associated PHF H, whose hash values belong to a
finite Abelian group Π. We suppose there exists a cyclic subgroup F of Π generated by f , of
order q, in which computing discrete logarithms can be done efficiently. We adapt the tradi-
tional construction to our setting, and encode m in the exponent of f (the generator of the
subgroup F) before masking fm with the hash of a random value. This ensures that if H is
homomorphic, the resulting encryption scheme will be linearly homomorphic. To build a PKE
scheme E with plaintext space Z/qZ from H, one defines E := (Setup,KeyGen,Enc,Dec) as
described in Fig. 3.2. Correctness of E follows from that of H.

Setup(1λ)

1. SM ← GenSM(1λ)

2. Return pp := SM

KeyGen(pp)

1. hk← hashkg(SM)

2. hp← projkg(hk)

3. Set pk := hp and sk := hk

4. Return (pk, sk)

Enc(hp,m)

1. Pick (x,w)← R

2. Let e← projhash(hp, x, w) · fm

3. Return (x, e)

Dec(hk, (x, e))

1. Compute M ← e · hash(hk, x)−1

2. If M /∈ F output ⊥

3. Return logf (M)

EvalSum(hp, (x, e), (x′, e′))

1. Pick (x′′, w′′)← R

2. Let x′′ ← x · x′ · x′′

3. Let e′′ ← e · e′ · projhash(hp, x′′, w′′)

4. Return (x′′, e′′)

EvalScal(hp, (x, e), α)

1. Pick(x′, w′)← R

2. Let x′′ := xα · x′

3. Let e′′ := eα · projhash(hp, x′, w′)

4. Return (x′′, e′′)

Figure 3.2: Linearly homomorphic encryption scheme E from a homomorphic PHF

Homomorphic properties. If H is homomorphic (cf. Definition 3.11), then algorithms
EvalSum and EvalScal of Fig. 3.2 correctly implement those of Definition 2.6, and so E is
linearly homomorphic.

83

CHAPTER 3. ENRICHING THE CL FRAMEWORK

Security. The following theorem states the requirements on SM and H for E to be ind-cpa-
secure. This is a well known result and indeed there is nothing new about the proof provided.
However as many of our more complex upcoming proofs of Chapter 4 follow a similar structure,
we provide details here, mainly for readers who may not be familiar with PHFs.

Theorem 3.20. Let E be the public key encryption scheme depicted in Fig. 3.2. If SM

is δL-hard and H is δs-smooth over X on F then for any PPT adversary A it holds that
Advind-cpaE,A ¬ δL + δs. Consequently, if SM is hard and H is smooth, then E is ind-cpa-secure.

Proof. The proof proceeds as a sequence of games, starting in Game0 which is the ind-cpa-
security experiment Expind-cpaE,A (cf. Section 2.5.1), and ending in a game where the challenge bit
β is statistically hidden from A’s view. By demonstrating each game step is indistinguishable
from A’s view, we prove that A’s probability of guessing the correct bit β in Expind-cpaE,A is
negligibly close to 1/2, which concludes the proof. Let Si denote the event A outputs β in
Gamei. By definition Advind-cpaE,A = |Pr[S0]− 1/2|.
In Game1, the challenger C uses hk instead of hp and the witness to compute the ciphertext,
i.e. after sampling (x,w)← R it computes:

c← (x, hash(hk, x)fmβ).

Other than this change Game1 is identical to Game0, and so by correctness of H the view of A
does not change. Hence:

|Pr[S1]− Pr[S0]| = 0.

In Game2, C samples x←↩X\L instead of sampling x from L. Other than this change Game2
is identical to Game1, and so by the δL-hardness of SM, adversary A cannot distinguish both
games with probability greater than δL. Hence:

|Pr[S2]− Pr[S1]| 6 δL.

In Game3, C samples γ ←↩ Z/qZ and multiplies the second element of the ciphertext by fγ .
By the smoothness over X on F , the distribution of A’s view in Game2 and Game3 is δs close,
so :

|Pr[S3]− Pr[S2]| 6 δs.

Finally observe that in Game3, the adversary receives an encryption of γ + mβ, where γ is
sampled uniformly from Z/qZ, and so is a perfect one time pad for the message mβ. Hence
A’s probability of guessing β is exactly 1/2, and:

Pr[S3] = 1/2.

Combining the above probability equations concludes the proof.

Remark. We emphasize that in Cramer-Shoup like encryption schemes resulting from PHFs
(as described above), the smoothness of the PHF allows for the challenger to know hk without
compromising the hardness of the underlying subset membership problem. This property will
be particularly useful for building secure distributed signature protocols in Chapter 5.

Invalid ciphertexts. We define invalid ciphertexts as these will be useful in our upcoming
proofs.

84

CHAPTER 3. ENRICHING THE CL FRAMEWORK

Definition 3.21. Let SM := (X̂,X, L̂,W,R) be a subgroup membership problem. Consider
the associated PHF H, whose hash values belong to a finite Abelian group Π. We suppose there
exists a cyclic subgroup F of Π generated by f , of order q, in which computing discrete loga-
rithms can be done efficiently. Consider the resulting PKE scheme E as described in Fig. 3.2. A
pair (x, e) is said to be an invalid ciphertext for E if it is of the form (x, e) = (x, hash(hk, x)·fm)
where x ∈ X̂\L̂.

Note that one can compute such a ciphertext using the secret hashing key hk, but not the
public projection key hp; that the decryption algorithm applied to (x, e) with secret key hk
recovers m; and that an invalid ciphertext is indistinguishable of a real ciphertext if SM is
hard.

Homomorphic properties over invalid ciphertexts. Since the homomorphic properties
of H hold over the whole group X̂, if H is homomorphic, then homomorphic operations hold
even if a ciphertext is invalid, whether this be between two invalid ciphertexts or between a
valid and invalid ciphertext.

3.4.2 Security against Active Adversaries

As explained in Section 3.4.1, smooth PHFs ensure confidentiality for public key encryption
protocols. They thereby guarantee security against passive adversaries. In order to further
ensure that active adversaries cannot learn sensitive information by running algorithms on
unexpected inputs, one must enforce ciphertext integrity. To this end a second PHF is used,
called an extended projective hash function (as first introduced by [CS02]), which allows to
perform a sanity check on the ciphertext, prior to revealing any confidential information.
An extended projective hash function (EPHF) for an instance of a subgroup membership
problem SM is defined as a PHF, only the hashing and projective hashing algorithms take an
additional input from some efficiently recognisable finite set E (we will formally define EPHFs
in Section 3.4.3).

We here recall the ideas underlying the generic construction of [CS02] allowing build
ind-cca-secure PKE. We do not formally define this generic construction, as we will not be
detailing ind-cca-secure encryption schemes in this work. We could build such schemes from
our running examples, however one then looses the homomorphic properties of the encryption
scheme, which are our main focus of interest to build more advanced protocols in upcoming
chapters.

We note however that the intuition underlying the security of the generic [CS02] con-
struction for ind-cca-secure PKE, and in particular the distinction between valid and invalid
ciphertexts as explained hereafter, is similar to that used in Chapter 4 to build functional en-
cryption schemes secure against active adversaries. Furthermore, the extended projective hash
functions defined in Section 3.4.3 will be needed to build these functional encryption schemes.

Consider an ind-cpa-secure PKE built from a projective hash function H, as described in
Fig. 3.2. Recall that ciphertexts are of the form c = (x, e). One augments the decryption key
sk of the PKE with a private hashing key ehk for an extended projective hash function eH, and
one adds eH’s public projection key ehp to the public encryption key pk. To further secure the
scheme against active adversaries, upon encryption, one computes a hash of (x, e) using the
the witness w associated to x and eH’s public projective hash function to obtain a hash value
π. The resulting ciphertext for the ind-cca-secure scheme is (x, e, π). Intuitively, it should be
infeasible, without ehk, to compute hash values for eH if x /∈ L̂. Hence if the ciphertext (x, e)
were invalid (cf. Definition 3.21), one should not be able to guess π without the knowledge

85

CHAPTER 3. ENRICHING THE CL FRAMEWORK

of sk2. Furthermore invalid ciphertexts are the only ciphertexts which, if decrypted, can leak
more (relevant) information than what an adversary learns in an ind-cpa attack (and hence
may leak harmful information to the scheme’s security).

Now upon receiving a ciphertext (x, e, π) (which may be invalid as we are now dealing with
active adversaries), the decryptor first computes the hash of (x, e) using ehk and the private
hashing algorithm of eH to obtain π′, and checks that π = π′. If equality holds, it pursues
decryption as in the ind-cpa-protocol, if not it aborts the decryption protocol, returning the
error symbol ⊥, so that no information is leaked other than the fact the hash value π was
wrong. In particular no information is leaked on the hashing key hk used to mask confidential
information, or on the encrypted message m.

Finally since all invalid ciphertexts are rejected, the adversary learns no more (significant)
information than it would in an ind-cpa attack. And hence the ind-cca-security of the scheme
follows from Theorem 3.20.

3.4.3 Extended Projective Hash Functions

We here formally define extended projective hash functions, and provide concrete instances
from our running examples. Definition 3.22 is an adaptation of the definition which was first
provided in [CS02], as once again we introduce additional algorithms to deal with groups of
unknown order and unrecognisable elements.

Definition 3.22. Let λ be a positive integer, and let E be an efficiently recognisable finite
set. Consider a generator GenSM for a subgroup membership problem, and an instance SM ←
GenSM(1λ). An extended projective hash function (EPHF) for the subgroup membership prob-
lem SM and auxiliary input space E is a tuple of algorithms eH := (ehashkg, êprojkg, eprojkg,
ehash, ̂eprojhash, eprojhash), where all algorithms have as implicit input the description SM

of the subset membership problem and:

• ehashkg(SM) is a PPT algorithm which on input the description of SM, outputs a
hashing key ehk in some set Kehk;

• êprojkg(ehk) is a deterministic algorithm which on input ehk ∈ Kehk outputs a projection
key êhp. The image of Kehk through êprojkg is denoted K

êhp
;

• eprojkg(hk) is a DPT algorithm which on input ehk ∈ Kehk outputs a public projection
key ehp, such that for ehk ∈ Kehk, ehp is a fixed deterministic function of the output of
êprojkg(ehk). The image of Kehk through eprojkg is denoted Kehp.

• ehash(hk, x, e) is a DPT algorithm which on input ehk ∈ Kehk, (x, e) ∈ X̂ × E outputs
the hash value ehash(hk, x, e). The image of X̂ × E through ehash is called the set of
hash values and is denoted Σ;

• ̂eprojhash(êhp, x) is a deterministic algorithm which on input êhp ∈ K
êhp

, x ∈ L̂, and

e ∈ E outputs the hash value ̂eprojhash(êhp, x, e) in Σ;

• eprojhash(ehp, x, w, e) is a DPT algorithm which on input ehp ∈ Kehp, x ∈ L, the cor-
responding witness w ∈ W and e ∈ E, outputs the hash value projhash(hp, x, w, e) in
Σ.

2This property for eH is called ’universal2’ in [CS02], it can easily be seen that it is implied by our notion of
vector-universality, defined in Chapter 4, allowing to build functional encryption secure against active adversaries

86

CHAPTER 3. ENRICHING THE CL FRAMEWORK

Correctness holds if for all λ ∈ N, any SM ← GenSM(1λ), any ehk ← ehashkg(SM), êhp ←
êprojkg(ehk) and ehp ← eprojkg(ehk) it holds that (1) ∀(x, e) ∈ L̂ × E, ̂eprojhash(êhp, x, e) =
ehash(ehk, x, e); and (2) for any (x,w) ∈ R and e ∈ E, eprojhash(ehp, x, w, e) = ehash(ehk, x, e).

Remark. The notions of homomorphism and key homomorphism can be adapted to EPHFs
in a straightforward way and must hold for any e ∈ E.

Generic construction for building EPHF

We use the generic construction of [CS02, Sec. 7.2] to build EPHFs, which we recall here
for completeness. Let λ be a positive integer, SM := (X̂,X, L̂,W,R) ← GenSM(1λ) be a
subgroup membership problem, and consider the associated PHF H := (hashkg, p̂rojkg, projkg,
hash, ̂projhash, projhash). Let p̃ be the smallest prime dividing |X̂/L̂|, and further consider
Γ : X̂×E 7→ {0, . . . , p̃−1}, sampled from a collision resistant hash function generator H. The
generic construction to build an EPHF eH with auxiliary input space E from H and Γ works
as follows:

• ehashkg(SM): Run hk0 ←↩ hashkg(SM); hk1 ←↩ hashkg(SM). Output ehk := (hk0, hk1).

• ehash(ehk, x, e): Let γ ← Γ(x, e). Output hash(hk0, x) · hash(hk1, x)γ .

• êprojkg(ehk): Let ĥp0 ← p̂rojkg(hk0); ĥp1 ← p̂rojkg(hk1). Output êhp := (ĥp0, ĥp1).

• eprojkg(ehk): Let hp0 ← projkg(hk0); hp1 ← projkg(hk1). Output ehp := (hp0, hp1).

• ̂eprojhash(êhp, x̂, e): Let γ ← Γ(x̂, e). Output ̂projhash(ĥp0, x̂) · ̂projhash(ĥp1, x̂)γ .

• eprojhash(ehp, x, w, e): Let γ ← Γ(x, e). Output projhash(hp0, x, w) · projhash(hp1, x, w)γ .

The hash key space of eH is Kehk = K2
hk, the set of projection keys is K

êhp
= K2

ĥp
, the set of

public projection keys is Kehp = K2
hp and the set of hash values is Σ = Π.

Lemmas 3.23 and 3.24 follow immediately from the above construction and the definitions
of decomposability (cf. Definition 3.18) and key homomorphism (cf. Definition 3.13).

Lemma 3.23. An EPHF built from a (Υ̂,Υ, F)-decomposable PHF via the above generic
construction is also (Υ̂,Υ, F)-decomposable. Furthermore, if H is (Υ̂,Υ, F)-decomposable then
p̃, the smallest prime dividing |X̂/L̂|, which parametrises Γ, is the smallest prime dividing
the order of Υ̂.

Lemma 3.24. Assuming (Khk,+) is an Abelian group, let the group operation over K2
hk be

coordinate-wise addition. Then an EPHF eH built from a key homomorphic PHF H via the
above generic construction is also key homomorphic.

Remark. Note that due to the action of the collision resistant hash function Γ, which does not
possess any homomorphic properties, and which takes as input (x, e), even if H is homomorphic,
eH is not.

87

CHAPTER 3. ENRICHING THE CL FRAMEWORK

Running Example 1 – DDH

We set E := G and sample Γ : G3 7→ {0, . . . , q − 1} from a collision resistant hash function
generator H. The extended projective hash function eHddh has hash key space Kehk := Z/qZ4;
set of projection keys Kehp := G2; set of hash values Σ = G; and is defined from Hddh as:

• ehashkg(SM) samples κ0, κ1, κ2, κ3 ←↩ U(Z/qZ), and outputs ehk = (κ0, κ1, κ2, κ3).

• ehash(ehk, (x0, x1), e) computes γ ← Γ(x0, x1, e) and outputs xκ0+γκ20 xκ1+γκ31 .

• eprojkg(ehk) computes hp0 := gκ00 gκ11 ; hp1 := gκ20 gκ31 , and outputs ehp := (hp0, hp1).

• eprojhash(hp0, hp1, (x0, x1), w, e) where (x0, x1) = (gw0 , g
w
1) computes γ ← Γ(x0, x1, e)

and outputs (hp0 · hp
γ
1)w.

Running Example 2 – HSM-CL

Let E := Ĝ and sample Γ : Ĝ2 7→ {0, . . . , q − 1} from a collision resistant hash function
generator H. The extended projective hash function eHhsm-cl has hash key space Kehk := Z2;
set of projection keys K

êhp
:= (Z/$Z)2; set of public projection keys Kehp := (Gq)2; set of

hash values Σ = Ĝ; and is defined from Hhsm-cl as:

• ehashkg(SM) samples hk0 ←↩ D̂; hk1 ←↩ D̂; and outputs ehk := (hk0, hk1).

• ehash(ehk, x, e), computes γ ← Γ(x, e) and outputs xhk0+γhk1 .

• êprojkg(ehk), computes ĥp0 := hk0 mod $, ĥp1 := hk1 mod $, and outputs êhp :=
(ĥp0, ĥp1).

• eprojkg(ehk), computes hp0 := ghk0q and hp1 := ghk1q , and outputs ehp := (hp0, hp1).

• ̂eprojhash(êhp, x, e), where x ∈ Ĝq, computes γ ← Γ(x̂, e) and outputs xĥp0+γĥp1 .

• eprojhash(ehp, x, w, e), where x = gwq , computes γ ← Γ(x, e) and outputs (hp0 · hp
γ
1)w.

Running Example 3 – DDH-f

We set E := Ĝ and sample Γ : Ĝ3 7→ {0, . . . , q − 1} from a collision resistant hash function
generator H. The extended projective hash function eHddh-f has hash key space Kehk := Z4;
set of projection keys K

êhp
:= (Z/$Z)4 × (Z/qZ)2; set of public projection keys Kehp := G2;

set of hash values Σ = Ĝ; and is defined from Hhsm-cl as:

• ehashkg(SM) samples κ0, κ1, κ2, κ3 ←↩ D̂, and outputs ehk = (κ0, κ1, κ2, κ3).

• ehash(ehk, (x0, x1), e) computes γ ← Γ(x0, x1, e) and outputs xκ0+γκ20 xκ1+γκ31 .

• êprojkg(ehk) computes κ̂i := κi mod $ for i ∈ {0, . . . 4}; ι0 := κ0 + ακ1 mod q; ι1 :=
κ2 + ακ3 mod q and outputs êhp := ((κ̂0, κ̂2), (κ̂1, κ̂3), (ι0, ι1)).

• eprojkg(ehk) computes hp0 := gκ0hκ1 ; hp1 := gκ2hκ3 , and outputs ehp := (hp0, hp1).

• ̂eprojhash(êhp, (y0, y1), e) where (y0, y1) = (z0, z1)� (f r, fαr) with z0, z1 ∈ Ĝq, computes
γ ← Γ(y0, y1, e) and outputs zκ̂0+γκ̂20 zκ̂1γκ̂31 (f r)ι0+γι1 .

• eprojhash(ehp, (x0, x1), r, e) where (x0, x1) = (gr, hr) computes γ ← Γ(x0, x1, e) and out-
puts
(hp0 · hp

γ
1)r = xκ0+γκ20 xκ1+γκ31 .

88

CHAPTER 3. ENRICHING THE CL FRAMEWORK

3.5 Linearly Homomorphic PKE from the CL Framework
As mentioned in Section 2.5.2, one of the most accomplished linearly homomorphic encryption
schemes is that of Paillier [Pai99] and generalisations thereof (e.g. [DJ01]). The security of these
schemes is based on the problem of factoring RSA integers (including the elliptic curve variant
of Paillier [Gal02]). The problem of devising a linearly homomorphic encryption based on the
discrete logarithm problem was left open until quite recently, with the work of Castagnos and
Laguillaumie [CL15]. Previous existing solutions either only supported a limited number of
additions [CPP06,CC07], or relied not only on the discrete logarithm problem but also on the
factorisation problem [BCP03].

In [CL15], Castagnos and Laguillaumie thus devised both the CL framework, and from this
framework the first linearly homomorphic public key encryption scheme whose security relies
solely on a discrete logarithm type assumption. What is more, their scheme, which we call
Πcl, benefits of the uncommon property of having a plaintext space of prime order q, where q
can be chosen (with some restrictions) independently of the security parameter. This notable
feature contrasts with the Paillier cryptosystem, in which the message space is of composite
order N , where N is an RSA integer and is thus much larger than what is required for many
practical applications.

We note that Πcl does not arise from projective hash functions. Consequently one cannot
isolate the different properties underlying its security as well as with PHF-based encryption
schemes (resulting from the generic construction of Fig. 3.2). To address this, while preserving
the unusual properties of Πcl, we devise two new linearly homomorphic encryption schemes in
the CL framework. Both of these are direct applications of the generic construction of Fig. 3.2
applied to the projective hash functions Hhsm-cl and Hddh-f of running examples 2 and 3. Apply-
ing Theorem 3.20, we thus obtain two ind-cpa-secure linearly homomorphic encryption schemes,
which, just as Πcl, have a message space of prime order q, where q can be chosen according
to ones’ needs. As we shall see in Chapters 4 and 5, when one uses linearly homomorphic
encryption schemes or, somewhat equivalently, projective hash functions to realise advanced
cryptographic primitives, this unusual property of being able to choose ones’ message space
has a strong impact on efficiency. We note that our encryption scheme relying on Hhsm-cl has
better efficiency than Πcl (and than the Hddh-f based scheme) as it allows to sample shorter
exponents without compromising security. Hence in our constructions of Chapters 4 and 5,
instantiations from Hhsm-cl yield the most efficient protocols.

In this section we first present the original encryption scheme of [CL15] before presenting
the two PHF based schemes arising from Hhsm-cl and Hddh-f , whose security rely on the HSM-CL
and the DDH-f assumption respectively.

3.5.1 Original Castagnos-Laguillaumie PKE Secure under DDH-f

Castagnos and Laguillaumie put forth in [CL15] a generic construction for a linearly homo-
morphic encryption scheme over Z/qZ based on a DDH-CL group with an easy DL subgroup.
Their protocol is similar to the one of Bresson et. al. [BCP03] whose ind-cpa-security relies on
the DDH assumption in (Z/N2Z)×, where N = PQ, using the arithmetic ideas of Paillier’s
encryption (cf. Fig. 2.1).

Castagnos and Laguillaumie prove their scheme is ind-cpa-secure under the DDH-CL as-
sumption (cf. Definition 3.5). We demonstrate below that one can be more precise and that
the security of this scheme is equivalent to the DDH-f assumption (cf. Definition 3.6). Note
that as this encryption scheme does not result from a projective hash function, one cannot
simply apply Theorem 3.20 to prove security.

89

CHAPTER 3. ENRICHING THE CL FRAMEWORK

The original [CL15] encryption scheme is an Elgamal type scheme in G, with plaintext
message m ∈ Z/qZ mapped to fm ∈ F . Thanks to the Solve algorithm, decryption does not
need a complex discrete logarithm computation.

Setting the parameters. Secret keys and encryption randomness are sampled from D :=
DZ,σ for σ > qs̃

√
λ to ensure that the distribution {gx, x ←↩ D} is 2−λ-close to the uniform

distribution in G (cf. Lemma 3.3). The plaintext space is Z/qZ, where q is a µ-bit prime, with
µ > λ. We depict their scheme in Fig. 3.3, where the Gen and Solve algorithms are those of
Definition 3.1. Verifying correctness and homomorphic properties is straightforward.

Setup(1λ)

1. Sample a µ-bit prime q

2. ppCL ← Gen(1λ, q)

3. Return pp := (ppCL, q)

KeyGen(pp)

1. Pick α←↩ D and set h← gα

2. Set pk := h and sk := α.

3. Return (pk, sk)

Enc(pk,m)

1. Sample r ←↩ D

2. Compute c1 ← gr, c2 ← fmhr

3. Return (c1, c2)

Dec(sk, (c1, c2))

1. Compute M ← c2/c
α
1

2. m← Solve(q, ppCL,M)

3. Return m

EvalSum(pk, (c1, c2), (c′1, c
′
2))

1. Pick r ←↩ D

2. Compute c′′1 ← c1c
′
1g
r, c′′2 = c2c

′
2h
r

3. Return (c′′1, c
′′
2)

EvalScal(pk, (c1, c2), α)

1. Pick r ←↩ D

2. Compute c′1 ← cα1 g
r, c′2 ← cα2h

r

3. Return (c′1, c
′
2)

Figure 3.3: Linearly homomorphic encryption scheme Πcl from [CL15]

Theorem 3.25. The encryption scheme Πcl of Fig. 3.3 is ind-cpa-secure if and only if the
DDH-f problem is hard in G.

Proof. Let us consider the ind-cpa-security experiment Expind-cpaΠcl,A
against adversary A, with

public key h = gα, where α ←↩ D, and a challenge ciphertext (c1, c2) = (gr, fmβhr) with
r ←↩ D and β ←↩ {0, 1}, m0,m1 ∈ Z/qZ. Assuming the DDH-f problem is δddh-f-hard, one
can replace (h, c1, h

r) = (gα, gr, gαr) by (gα, gr, gαrfu) = (gα, gr, hrfu) for u←↩ Z/qZ; and A

cannot tell the difference with probability greater than δddh-f . Hence we substitute the original
c2 for c′2 := hrfu+mβ . For A, the value of (r mod n) is fixed by c1 = gr as g is a generator, so
the value of hr is fixed. As a result from c′2 an unbounded A can infer u + mβ mod q but as
u is uniformly distributed in Z/qZ, A gains no information on β.

Conversely, we construct an ind-cpa adversary from a distinguisher for the DDH-f problem.
Choose m0 ∈ Z/qZ and m1 := m0 +u with u←↩ Z/qZ. From the public key and the challenge
ciphertext, construct the triplet

(h, c1, c2/f
m0) = (gα, gr, gαrfmβ−m0).

This gives a DH triplet if and only if β = 0 and the exponent of f is uniformly distributed

90

CHAPTER 3. ENRICHING THE CL FRAMEWORK

Setup(1λ)

1. Sample a µ-bit prime q

2. ppCL ← Gen(1λ, q)

3. Return pp := (ppCL, q)

KeyGen(pp)

1. Sample x, y, α←↩ D

2. Compute h← gα, η ← gxhy

3. Set pk := (h, η) and sk := (x, y)

4. Return (pk, sk)

Enc(pk,m)

1. Sample r ←↩ D

2. Return (gr, hr, ηrfm)

Dec(sk, (c1, c2, c3))

1. Compute M ← c3/(cx1c
y
2)

2. Return Solve(q, ppCL,M)

EvalSum(pk, (c1, c2, c3), (c′1, c
′
2, c
′
3))

1. Sample r ←↩ D

2. Let c′′1 ← c1c
′
1g
r, c′′2 ← c2c

′
2h
r, c′′3 ←

c3c
′
3η
r

3. Return (c′′1, c
′′
2, c
′′
3)

EvalScal(pk, (c1, c2, c3), α)

1. Sample r ←↩ D

2. Let c′1 ← cα1 g
r, c′2 ← cα2h

r , c′3 ← cα3 η
r

3. Return (c′1, c
′
2, c
′
3)

Figure 3.4: Enhanced linearly homomorphic encryption scheme Πddh-f from DDH-f

in Z/qZ if and only if β = 1. As a result, one can use the output of a distinguisher for the
DDH-f problem to win the ind-cpa experiment.

3.5.2 Enhanced Variant Secure under DDH-f

We here modify the original PKE scheme of Fig. 3.3 by adding a key à la Cramer-Shoup (cf.
[CS98]). The security of this scheme also relies on the DDH-f assumption.

This scheme, which we call Πddh-f , turns out to be a direct application of the generic
construction of Section 3.4.1 for building PKE from PHF, resulting from Hddh-f of running
example 3. Consequently, the ind-cpa-security of Πddh-f follows immediately from Theorem 3.20.

Setting the parameters. We use the projective hash function Hddh-f of running example 3.
Hashing keys are sampled from D := DZ,σ for σ > qs̃

√
λ to ensure that Hddh-f is 2−λ-smooth

over G on F (cf. Lemmas 3.3 and 3.17). The plaintext space is Z/qZ, where q is a µ-bit prime,
with µ > λ. The scheme is depicted in Fig. 3.4.

Corollary 3.26 (of Theorem 3.20). Let Πddh-f denote the encryption scheme described in
Fig. 3.4. If SMddh-f is δL-hard, and Hddh-f is δs-smooth then:

Advind-cpaΠddh-f ,A
(λ, µ) 6 δL + δs.

Thus if SMddh-f is hard, and Hddh-f is smooth then Πddh-f is ind-cpa-secure.

3.5.3 Linearly Homomorphic PKE Secure under HSM-CL

The original PKE scheme of Section 3.5.1 was inspired by the scheme of [BCP03]. Another
encryption scheme based on Elgamal over (Z/N2Z)× was proposed by Camenisch and Shoup
in [CS03]. Its ind-cpa-security relies on the DCR assumption (cf. Definition 2.3). In Fig. 3.5

91

CHAPTER 3. ENRICHING THE CL FRAMEWORK

Setup(1λ)

1. Sample a µ-bit prime q

2. ppCL ← Gen(1λ, q)

3. Return pp := (ppCL, q)

KeyGen(pp)

1. Sample α←↩ Dq and h← gαq

2. Set pk := h and sk := α

3. Return (pk, sk)

Enc(pk,m)

1. Sample r ←↩ Dq

2. Return (grq , f
mhr)

Dec(sk, (c1, c2))

1. Compute M ← c2/c
α
1

2. Return Solve(q, ppCL,M)

EvalSum(pk, (c1, c2), (c′1, c
′
2))

1. Sample r ←↩ Dq

2. Compute c′′1 ← c1c
′
1g
r
q , c
′′
2 ← c2c

′
2h
r

3. Return (c′′1, c
′′
2)

EvalScal(pk, (c1, c2), α)

1. Sample r ←↩ Dq

2. Compute c′1 ← cα1 g
r
q , c
′
2 ← cα2h

r

3. Return (c′1, c
′
2)

Figure 3.5: linearly homomorphic encryption scheme Πhsm-cl from HSM-CL

we present a slight modification to this scheme so that it relies on the HSM-CL assumption
of Definition 3.4 in order to somewhat generalise the Camenisch-Shoup approach. The result-
ing scheme, which we call Πhsm-cl, is in fact a direct application of the generic construction
of Section 3.4.1 for building PKE from PHF, resulting from Hhsm-cl of running example 2.
Consequently, the ind-cpa-security of Πhsm-cl follows immediately from Theorem 3.20.

Setting the parameters. We use the PHF Hhsm-cl of running example 2. The plaintext
space is Z/qZ, where q is a µ-bit prime, with µ > λ. Note that here the secret key x (and
the randomness r) is drawn from a distribution Dq such that {gxq , x←↩ Dq} is at distance less
than δs from the uniform distribution in Gq, this does not change the view of the adversary
A. Indeed, following the same steps as in proof of Theorem 3.20, one can add an intermediate
Game0′ between Game0 (the real ind-cpa experiment) and Game1, in which one samples the
secret key x from D instead of Dq. Since at this stage, the only view A has of x is in the
exponent of gq, which is of order s (where s and q are co-prime, and n = qs), this change
is unnoticeable to A. We can then proceed as in proof of Theorem 3.20, using the hardness
of SMhsm-cl and the smoothness of Hhsm-cl to prove that the challenge message is statistically
hidden. The scheme is depicted in Fig. 3.5. Correctness follows from that of Hhsm-cl.

Corollary 3.27 (of Theorem 3.20). Let Πhsm-cl denote the encryption scheme described in
Fig. 3.5. If SMhsm-cl is δL-hard, and Hhsm-cl is δs-smooth over Ĝ on F then:

Advind-cpaΠhsm-cl,A
(λ, µ) 6 δL + δs.

Thus if SMhsm-cl is hard, and Hhsm-cl is smooth then Πhsm-cl is ind-cpa-secure.

A note on efficiency. We emphasize that in Πhsm-cl, we can sample shorter exponents than
in the Πcl and Πddh-f encryption schemes. This results in faster encryption, decryption, and
homomorphic operations. Hence in our constructions of Chapter 4 instantiations from Hhsm-cl

yield more efficient protocols than instantiations from Hddh-f . This explains why, in Chapter 5,
we only provide instantiations of our constructions from Hhsm-cl.

92

CHAPTER 3. ENRICHING THE CL FRAMEWORK

DDH DDH-f HSM-CL

Πddh-f ind-cpaΠcl ind-cpa Πhsm-cl ind-cpa

Figure 3.6: Reductions between assumptions and ind-cpa security of CL variants

3.5.4 Relations between Assumptions DDH-CL, DDH-f and HSM-CL

One can establish direct reductions between the problems underlying the DDH-CL, DDH-
f and HSM-CL assumptions. However it is somewhat easier to use intermediate results on
the ind-cpa-security of the schemes defined in the previous subsection to demonstrate these
reductions.

We proved in Theorem 3.25 that the original CL cryptosystem is ind-cpa if and only if the
DDH-f assumption holds. In [CL15], it was proven that this scheme is ind-cpa under the DDH-
CL assumption. As a result, DDH-f is a weaker assumption than DDH-CL. Furthermore, it
is easy to see that if Πhsm-cl of Fig. 3.5 is ind-cpa then the original Πcl is ind-cpa: from a public
key h = gxq , x←↩ D̂q and a ciphertext c = (c1, c2) = (grq , f

m ·hr), r ←↩ DZ,σ′ for Πhsm-cl, one can
chose a, b←↩ Z/qZ and construct h′ = h ·fa, and the ciphertext c′ = (c′1, c

′
2) = (c1 ·f b, c2 ·fab).

According to Lemma 3.3, Item 6, h′ and c′1 are statistically indistinguishable from the uniform
distribution in G. Furthermore, h′ = gxq f

a = gα where α is defined modulo n from the Chinese
remainder theorem, such that α ≡ x (mod s) and α ≡ a (mod q). Likewise, c′1 = grqf

b = gβ

for some β defined equivalently. Finally, one has c′2/f
m = gxrq f

ab = gαβ mod s
q fαβ mod q = gαβ.

As a result, (h′, c′1, c
′
2/f

m) is a DH triplet in G, so h′, c′ are a public key and a ciphertext for
m for Πcl. As a result, an ind-cpa attacker against Πhsm-cl can be built from an ind-cpa attacker
against Πcl. Now, if the HSM-CL assumption holds, from Corollary 3.27, Πhsm-cl is ind-cpa, so
Πcl is also ind-cpa and the DDH-f assumption holds.

We can sum up these results with the following theorem (see also Fig. 3.6).

Theorem 3.28. The DDH-CL assumption implies the DDH-f assumption. Furthermore, the
HSM-CL assumption implies the DDH-f assumption.

3.6 Zero-Knowledge Proofs for the CL Framework
Our setting contrasts to groups of known order where one can efficiently recognise group
elements, such as the group of points of an elliptic curve G, generated by P of order q, or
subgroups of order q of (Z/pZ)∗, where q is known. Indeed in the CL framework, we deal with
a cyclic subgroup Gq := 〈gq〉 of Ĝ, where gq is of unknown order, and elements of Gq are not
efficiently recognisable. One can only efficiently check that elements live in Ĝ. It is crucial to
take this into account in all of our protocols for security to hold against malicious adversaries.

Since our encryption schemes presented in Section 3.5 follow an Elgamal like structure,
we have at our disposal a whole arsenal of zero-knowledge proofs and arguments for Elgamal
ciphertexts and for proving knowledge of discrete logarithms (e.g., [Sch90, CP93]) which we
can build upon. Of course, when adapting these proofs to the CL framework, one must be
careful not to sacrifice efficiency.

We thus develop proofs and arguments of knowledge for various relations in the CL frame-
work. Among other uses, these allow to prove knowledge of an encrypted value, as well as
the encryption randomness, thereby ensuring a ciphertext is honestly computed. The rela-

93

CHAPTER 3. ENRICHING THE CL FRAMEWORK

tions come in various flavours, depending on the requirements of our applications, as well as
trade-offs between efficiency and security.

Throughout the rest of the chapter λ ∈ N refers to the security parameter; q is a µ-
bit prime, where µ > λ; we consider ppCL := (s̃, g, f, gq, Ĝ, G, F,Gq) ← Gen(1λ, q), where
GenCL = (Gen, Solve) is the generator of a HSM-CL group with an easy DL subgroup; and G is
an (additive) cyclic group of prime order q generated by P . We consider the subset membership
problem SMhsm-cl, associated projective hash function Hhsm-cl of running example 2; when
referring to the HSM-CL encryption scheme, we mean the resulting ind-cpa-secure public key
encryption scheme Πhsm-cl of Fig. 3.5. The secret key of the encryption scheme is denoted hk,
while the public key is hp← ghkq .

For our zero knowledge proofs, we need exponents for which we are proving knowledge to be
sampled uniformly from some bounded set {0, . . . , S}. As noted in Lemma 3.3, to instantiate
Dq, from which secret keys and encryption randomness are sampled in the HSM-CL encryption
scheme, one can use the uniform distribution on {0, . . . , 2λ−2s̃}. We thus let S := 2λ−2s̃.

3.6.1 A Zero-Knowledge Proof of Knowledge for Rcl-dl

In this section, we provide a ZKPoK for the relation Rcl-dl (defined hereafter), which proves
knowledge of the randomness used for encryption, and of the value x which is both encrypted
in a given ciphertext, and the discrete logarithm of some Q ∈ G. This proof will be essential
for our two party signing protocol in Section 5.2, to ensure correct behaviour of party P1.

Recall that if a ciphertext ct := (c1, c2) is an honestly generated3 encryption of x under
public key hp it holds that ct = (grq , f

xhpr) for some r ∈ {0, . . . , S}. The relation is hence
defined as follows, where the description of the group (G, P, q) and ppCL are implicit public
inputs:

Rcl-dl := {(hp, (c1, c2), Q); (x, r) | c1 = grq ∧ c2 = fxhpr ∧Q = xG}.

As our ZKPoK is partly performed in a group of unknown order, we rely on the Schnorr-
like Girault-Poupard-Stern statistically ZK identification scheme [GPS06], which we turn into
a ZKPoK of the randomness used for encryption and of the discrete logarithm of an element
of G, using binary challenges. The resulting protocol, called Σcl-dl and presented in Fig. 3.7,
provides a statistical zero knowledge proof of knowledge for Rcl-dl.

Though it provides strong security guarantees, we note that the protocol of Fig. 3.7 is
quite inefficient, as it must be repeated many times to achieve a satisfying soundness error.
In Section 3.6.2 we describe a trick which allows to increase the challenge space, and thereby
reduce the number of rounds, while maintaining statistical soundness. In Section 3.7 we dras-
tically reduce the number of rounds by relying on computational assumptions introduced in
Section 3.2.

The following theorem states the security of the ZKPoK for Rcl-dl.

Theorem 3.29. The protocol Σcl-dl described in Fig. 3.7 is a statistical zero knowledge proof
of knowledge with soundness 2−`, as long as ` is polynomial and `S/A is negligible, where A
is a positive integer.

Proof. We prove completeness, soundness and zero-knowledge.
Completeness. This follows easily by observing that when ((hp, (c1, c2), Q); (x, r)) ∈ Rcl-dl, for

3By honestly generated we mean computed as prescribed by the encryption algorithm.

94

CHAPTER 3. ENRICHING THE CL FRAMEWORK

Public parameters: A ∈ N, S := 2λ−2s̃, (G, P, q) and ppCL.
Input : (r, x) and (hp, c1, c2, Q, P) Input : (hp, c1, c2, Q, P)
Repeat ` times

r1 ←↩ {0, . . . , A− 1} ; r2 ←↩ Z/qZ

t1 ← hpr1f r2 ; T2 ← r2P ; t3 ← gr1q
t1, T2, t3−−−−−−−−−→

k←−−−−−−−−− k ←↩ {0, 1}
u1 ← r1 + kr in Z

u2 ← r2 + kx mod q
u1, u2−−−−−−−−−→ Check u1 ∈ {0, . . . , A+ S}

and t1 · ck2 = hpu1 · fu2
and T2 + k ·Q = u2 · P
and t3 · ck1 = gu1q

Figure 3.7: The ZKPoK Σcl-dl for Rcl-dl

any k ∈ {0, 1} the values computed by an honest prover will indeed verify the four relations
checked by the verifier.
Soundness. For soundness, the protocol is in fact special sound. Indeed notice that for com-
mitted values t1, T2, t3, if a prover P ∗ can answer correctly for two different values of k, he
must be able to answer to challenges 0 and 1 with u1, u2 and u′1, u

′
2, where u1 and u′1 are

smaller than A+ S − 1, such that u2P = u′2P −Q, hpu1fu2c2 = hpu
′
1fu

′
2 and gu1q c1 = g

u′1
q . Let

σ1 ← u′1 − u1, σ2 ← u′2 − u2 mod q; we obtain gσ1q = c1, σ2P = Q and hpσ1fσ
′
2 = c2. Thus P ∗

can easily compute x← σ2 mod q and r ← σ1 in Z. While this gives a knowledge error of 1/2,
the soundness is amplified to 2−` by repeating the protocol sequentially ` times.
Zero-knowledge against malicious verifiers. We must exhibit a simulator S which, given the
code of some verifier V ∗, produces a transcript indistinguishable from that which would be
produced between V ∗ and an honest prover P (proving the knowledge of a tuple in Rcl-dl)
without knowing the witnesses (x, r) for (hp, (c1, c2), Q) in the relation Rcl-dl.

The potentially malicious verifier may use an adaptive strategy to bias the choice of the
challenges to learn information about (r, x). This implies that challenges may not be randomly
chosen, which must be taken into account in the security proof.

We describe an expected PT simulation of the communication between a prover P and a
malicious verifier V ∗ for one round of the proof. Since the simulated round may not be the first
round, we assume V ∗ has already obtained data, denoted by hist, from previous interactions
with P . Then P sends the commitments t1, T2, t3 and V ∗ chooses – possibly using hist and
t1, T2, t3 – the challenge k(t1, T2, t3, hist).

Description of the simulator: Consider S simulating a given round of identification as
follows:

1. S chooses random values k̄ ∈ {0, 1}, ū1 ∈ {S − 1, . . . , A− 1} and ū2 ∈ Z/qZ.

2. S computes t̄1 ← hpū1f ū2/ck̄2; T̄2 ← ū2 ·P − k̄ ·Q and t̄3 ← gū1q /c
k̄
1, and sends t̄1, T̄2 and

t̄3 to V ∗.

3. S receives k(t̄1, T̄2, t̄3, hist) from V ∗.

4. If k(t̄1, T̄2, t̄3, hist) 6= k̄ then return to step 1, else return (t̄1, T̄2, t̄3, k̄, ū1, ū2).

95

CHAPTER 3. ENRICHING THE CL FRAMEWORK

To demonstrate that Σcl-dl is indeed ZK, one justifies that the distribution output by S is
statistically close to that output in a real execution of the protocol, and that the simulation
runs in expected polynomial time.

Intuitively, sampling the randomness r1 from a large enough distribution (i.e. S � A)
ensures that the distribution of t1, T2, t3 in a real execution is statistically close to that in a
simulated execution.

The analysis of this statistical distance, denoted ε, between the distribution of tuples output
by S and that of tuples output by a real execution of the protocol is quite technical and similar
to that of [GPS06]. We do not provide the details here, though the interested reader can refer
to Appendix B. Applying their analysis to our setting allows us obtain the following bound:

ε <
8S
A
.

Thus the real and simulated distributions are statistically indistinguishable if S/A is negligible.
Therefore for the simulation of all ` rounds to be indistinguishable from ` rounds of a real
execution, `S/A must be negligible.

Running time of the Simulator: To see that the simulator runs in expected PT, notice that
step 3 outputs a tuple (t̄1, T̄2, t̄3, k̄, ū1, ū2) if k(t̄1, T̄2, t̄3, hist) = k̄ . Since k̄ is sampled at random
from {0, 1}, the expected number of iterations of the loop is 2. Therefore the complexity of the
simulation of all ` rounds is O(`). Thus if `S/A is negligible and ` is polynomial, the protocol
is statistically ZK.

3.6.2 A trick to improve efficiency.

In this section we introduce the lowest common multiple (lcm) trick. This trick allows us to
significantly increase the size of the challenge set compared to that of Section 3.6.1, and thereby
reduce the number of repetitions required of the proof. We explain the trick via a ZKPoK for a
simple relation: that of discrete logarithms in a group of unknown order, we call the resulting
proof Σlcm-dl. This allows us to focus on the essential idea of the trick. However, as will be
discussed at the end of this subsection, the trick can also be applied to more complex relations
(e.g. to improve Σcl-dl of Section 3.6.1, or for the interactive setup protocol of Section 5.3.2).

Throughout this section we denote y := lcm(1, 2, 3, . . . , 2d − 1) and C = {0, . . . , 2d − 1}.

The lowest common multiple trick. For a given statement h, the proof Σlcm-dl does not
actually prove knowledge of the discrete logarithm of h, but rather of hy. Precisely, the protocol
Σlcm-dl of Fig. 3.8 is a ZKPoK for the following relation:

Rlcm-dl := {(h, gq); z | hy = gzq ; y = lcm(1, 2, 3, . . . , 2d)}.

Theorem 3.30. The protocol Σlcm-dl described in Fig. 3.8 is a statistical zero knowledge proof
of knowledge with soundness 2−`, as long as `/d and 2d are polynomial and 2d`S

Ad is negligible,
where A is a positive integer.

Proof. We prove correctness, soundness and zero-knowledge.
Correctness. If h = gxq , then guq = gr+kxq = grq · (gxq)k = t · hk and V accepts.
Special soundness. Suppose that for a committed value t, prover P ∗ can answer correctly for
two different challenges k1 and k2. We call u1 and u2 the two answers. Let k := k1 − k2 and
u := u1 − u2, then since gu1q = t · hk1 and gu2q = t · hk2 , it holds that guq = hk. By the choice of
the challenge set, k < 2d, and since y = lcm(1, 2, 3, . . . , 2d − 1), it holds that y/k is an integer.

96

CHAPTER 3. ENRICHING THE CL FRAMEWORK

Public parameters: A ∈ N, S := 2λ−2s̃, (G, P, q), ppCL and y.

Input : x and h := gxq Input : h
Repeat `/d times

r ←↩ {0, . . . , A− 1}
t := grq

t−−−−−−−−−−→

k←−−−−−−−−−− k ←↩ {0, . . . , 2d − 1}
u := r + kx in Z u−−−−−−−−−−→ Check u ∈ {0, . . . , A+ 2dS}

and guq = t · hk

Figure 3.8: The ZKPoK Σlcm-dl for Rlcm-dl where y = lcm(1, 2, 3, . . . , 2d − 1)

Consequently (guq)y/k = (hk)y/k = hy. Denoting z := uy/k, P ∗ can compute z satisfying
gzq = hy, so if P can convince V for two different challenge values, then P ∗ can compute a
witness z for (h, gq). Hence one execution of the elementary protocol gives a soundness error
of 1/|C| = 2−d. The soundness is amplified to 2−` by repeating the protocol sequentially `/d
times.
Zero knowledge. We here only sketch the simulator, and the intuition backing the zero-
knowledge property of the protocol, as the proof is very similar to that of Theorem 3.29.

Given h the simulator samples k ←↩ C and u←↩ {0, . . . , A+kS−1}, computes t← guq ·h−k.
The distribution followed by the transcript (h, t, k, u) is statistically close to that produced by
real executions of the protocol. This holds since an honest prover samples x from {0, . . . S−1},
the challenge space is of size |C| = 2d and r is sampled {0, . . . , A − 1}, where A � S · |C| =
S · 2d. As the simulator must simulate `/d rounds of the protocol, we need, as in proof of
Theorem 3.29, (`/d)S2d/A to be negligible (for the distribution of all `/d real and simulated
transcripts to be indistinguishable), and `/d to be polynomial (for the simulator to run in
polynomial time).

Applying the lcm trick to Σcl-dl and implications. In our distributed signature protocols
of Chapter 5 we use the homomorphic properties of the Πhsm-cl encryption scheme to allow
parties to combine their private inputs while keeping these inputs secret. To ensure that
no information leaks from the homomorphic operations performed on ciphertexts, one must
enforce that ciphertexts are computed honestly as per the encryption algorithm. To this end,
we will require that parties prove their ciphertexts are well formed. One can use the ZKPoK
Σcl-dl of Fig. 3.7, which proves (among other things) that a ciphertext is well formed, and
ensures that statistically no parties can cheat. This choice is somewhat unsatisfactory in terms
of efficiency, since in order to attain a satisfying soundness error of 2−λ, the elementary proof of
Fig. 3.7 must be repeated λ times, as it uses binary challenges. If we use the above technique
(the lcm trick) applied to Σcl-dl, with y := lcm(1, 2, 3, . . . , 2d − 1), one can divide by d the
number of repetitions. However one obtains a ZKPoK for the following relation:

Rlcm-cl-dl := {(hp, (c1, c2), Q); (x, z) | cy1 = gzq ∧ c
y
2 = fx·yhpz ∧Q = xP}.

This entails a few modification for the overall protocol (cf. Section 5.2.6, page 179), since at the
end of this proof, parties are only convinced that ciphertexts to the power y are well formed.

97

CHAPTER 3. ENRICHING THE CL FRAMEWORK

On the choice of d. The size of the challenge set C from which k is sampled determines the
number of times the protocol needs to be repeated in order to achieve a reasonable soundness
error. Consequently it is desirable to take C as large as possible. However, when used as part
of a larger protocol, parties will need to raise ciphertexts to the power y prior to performing
homomorphic operations. Consequently |C| must be chosen small enough for this exponentia-
tion to take reasonable time. Hence setting C := {0, 1}10, and y = lcm(1, . . . , 210 − 1), which
is a 1479 bits integer, ensures exponentiating to the power y remains efficient. To achieve a
soundness error of 2−` the protocol must then repeated `/10 times.

3.7 Zero-Knowledge Arguments for the CL Framework
For the following protocols, we use the LO assumption and the SR assumption for class groups.
We show that whatever the challenge space, if one cannot extract a witness, then one can break
at least one of these two assumptions. This allows to significantly increase the challenge space
of our proofs, and reduce the number of rounds needed to achieve a satisfying soundness, which
yields improvements both in terms of bandwidth and of computational complexity. Using such
assumptions in the context of generalised Schnorr proofs in groups of unknown order is not
novel (e.g. [DF02,CKY09]). We adapt these techniques to our framework. Accordingly, when
referring the HSM-CL encryption scheme, we mean Πhsm-cl of Fig. 3.5, with the modification
that we do not use the somewhat deterministic generator gq output by Gen, but rather a
random power ĝq of gq. Thus the secret key of the encryption scheme is hk, while the public
key is now hp ← ĝhkq . This modification is necessary, since in our arguments of knowledge,
soundness reduces to the difficulty of computing roots of ĝq.

The first ZKAoK we present ensures a ciphertext for the HSM-CL encryption scheme is
well formed. The second extends this to deal with the Rcl-dl relation presented in Section 3.6.1.
Settling for computationally convincing arguments of knowledge for Rcl-dl allows us to hugely
improve efficiency compared to the protocols of Section 3.6. Indeed, our arguments of knowl-
edge allow us to chose a challenge space of size 2λ, and hence one execution of the elementary
proof suffices to obtain a satisfying knowledge error (under computational assumptions) of
≈ 2−λ. Our results are quite general and can have useful applications even beyond the specific
threshold setting which we use it for in Chapter 5.

A note on the zero-knowledge property. Due to the fact the challenge space is no longer
polynomial in the security parameter, the simulator used in proofs of Theorems 3.29 and 3.30,
allowing us to back the statistical zero-knowledge property of Σcl-dl and Σlcm-dl no longer runs
in polynomial time. Indeed, its expected running time (for one execution of the protocol) is
O(` · C), where ` is the number of iterations of an elementary proof, and C is the size of the
challenge set. Clearly if we chose C = 2λ as suggested above, the simulator is not efficient.

Thus we only prove our ZKAoK to be special honest-verifier zero-knowledge, i.e., the zero-
knowledge property holds as long as the verifier samples the challenge from the description
prescribed by the protocol; this must of course be taken into account when these arguments
are used to secure more complex protocols. Indeed, a malicious verifier could, in a real life
application, choose the challenge arbitrarily (i.e. not sampled from the prescribed distribution),
in which case special honest-verifier zero-knowledge is no longer sufficient to ensure there is no
leakage of information. However there exist standard techniques [Gro04, GMY06] allowing to
convert special honest-verifier zero-knowledge arguments into full zero-knowledge arguments
secure against arbitrary verifiers in the common reference string model which can be very
efficient, and only cost a small additive overhead.

We note that when using these arguments of knowledge in our full threshold protocol

98

CHAPTER 3. ENRICHING THE CL FRAMEWORK

of Section 5.3, honest verifier zero knowledge is sufficient for our purposes. Indeed, when
simulating the view an adversary in the overall protocol, the ZKAoK do not need to be
simulated (the simulator does know the values for which it is proving knowledge), hence our
proof to goes through with arguments which are only honest verifier zero knowledge. This is
not the case for our two-party protocol of Section 5.2, in which the simulator (simulating party
P1) does not know the value for which it is proving knowledge.

The fact we only consider honest verifiers also allows us to sample exponents from Gaussian
distributions, as simulating distributions when dealing with honest verifiers is much simpler.
We do not rule out the possibility of sampling exponents from Gaussian distributions for the
proofs Σcl-dl and Σlcm-dl of Section 3.6, though we have not yet performed the analysis in this
setting, we believe it would be an interesting point to investigate.

Setting the parameters. For both our ZKAoK we need to bound the range in which sampled
exponents live (those of the group of unknown order generated by gq for which we are proving
knowledge). As noted in Lemma 3.3, to instantiate Dq, from which secret keys and encryption
randomness are sampled, one can use the Gaussian distribution Dq = DZ,σ′ where σ′ =
s̃
√
λ. For such a choice of Dq, exponents lie in the set {−10σ′, . . . , 10σ′} with probability

> 1 − 2−80. We thus let S := 10s̃
√
λ and assume r ←↩ Dq satisfies r ∈ {−S, . . . , S}. The fact

we use Gaussian distributions does not come into play in the upcoming proofs (all we need
is the aforementioned bound on the size of exponents), however it will have an impact on
the efficiency of our protocols of Chapter 5, since as mentioned in Section 2.7, sampling from
discrete Gaussian distributions allows us to have shorter exponents than folded uniforms.

Proving a ciphertext for the HSM-CL encryption scheme is well formed

Recall that a ciphertext encrypting a ∈ Z/qZ for Πhsm-cl is of the form ct := (c1, c2) with
c1 = ĝrq , c2 = hprfa and r ∈ {−S, . . . , S}. For some C ∈ N, consider the relation:

REnc := {(hp, ct); (a, r) | hp ∈ Ĝ; c1 = ĝrq ∧ c2 = hprfa}.

It is easy to see that REnc is essentially the Rcl-dl relation, without the proof of knowledge
of the discrete logarithm of Q ∈ G. For our full threshold signatures of Section 5.3 we only
need parties to prove ciphertexts are correct, so relation REnc is sufficient. We shall provide a
ZKAoK for Rcl-dl in Fig. 3.10, however we note that the resulting protocol is very similar to
that for REnc presented here. Moreover the main difficulties in proving the soundness of these
ZKAoK are addressed in proof of Theorem 3.31, and are the same for both protocols.

We here present a ZKAoK for REnc, where the challenge set is {0, . . . , C−1}. The protocol is
given in Fig. 3.9, the only constraint on C is that the LOC assumption holds (cf. Definition 3.7).

Theorem 3.31. Let {0, . . . , C−1} be the challenge set for the protocol of Fig. 3.9. Suppose the
SR assumption holds for GenCL and the LOC assumption holds for GenCL. Then the interactive
protocol of Fig. 3.9 is an argument of knowledge for REnc with knowledge error κ = 4/C. If
r ∈ {−S, . . . , S}, and SC/A is negligible, where A ∈ N then the protocol is honest verifier
statistical zero-knowledge.

Proof. We prove the properties of completeness, honest verifier zero-knowledge and soundness.
Completeness. If P knows r ∈ {−S, . . . , S} and a ∈ Z/qZ s.t. (hp, ct); (a, r) ∈ REnc, and both
parties follow the protocol, all of V ’s check pass.
Special honest verifier zero-knowledge. Given hp, ct = (c1, c2), and a random challenge k ∈
{0, . . . , C − 1}, a simulator can sample u1 ←↩ {−CS, . . . , SC + A − 1} and u2 ←↩ Z/qZ,

99

CHAPTER 3. ENRICHING THE CL FRAMEWORK

The relation generator REnc:

1. Run ppCL := (s̃, g, f, gq, Ĝ, G, F,Gq)← Gen(1λ, q).

2. Let S := 10 · s̃ ·
√
λ, and set A ∈ N. Sample t←↩ Dq and let ĝq := gtq.

3. Output REnc, S, A and (ppCL, ĝq,Solve(·)).

Input: (a, r) and (hp, ct)) Input: (hp, ct)

r1 ←↩ {0, . . . , A− 1}
r2 ←↩ Z/qZ
t1 := ĝr1q

t2 := hpr1f r2
t1,t2−−−−−−−−−−−−→

k ←↩ {0, . . . , C − 1}
k←−−−−−−−−−−

u1 := r1 + kr ∈ Z
u2 := r2 + ka ∈ Z/qZ

u1,u2−−−−−−−−−−−−−→ Check u1 ∈ {−SC, . . . , SC +A− 1}
and hp, c1, c2, t1, t2 ∈ Ĝ
and u2 ∈ Z/qZ and ĝu1q = t1c

k
1

and hpu1fu2 = t2c
k
2

Figure 3.9: ZKAoK for REnc.

compute t2 := hpu1fu2c−k2 and t1 := ĝu1q c
−k
1 such that the transcript (hp, ct, t2, t1, k, u1, u2) is

indistinguishable from a transcript produced by a real execution of the protocol.
Soundness. Consider a PT prover P ∗ and let view be any view P ∗ may have after having pro-
duced (hp, ct). Recall that accview,P ∗ denotes P ∗’s probability of making V accept, conditioned
on view view, and that κ is the probability that P ∗ can make V accept without knowing a
witness.

Since there are C different challenges, if accview,P ∗ > κ(λ) = 4/C, standard rewinding
techniques allow to obtain in expected PT a situation where, for a commitment (t1, t2), P ∗

has correctly answered two different values k and k′. We call u1, u2 and u′1, u
′
2 the corresponding

answers, such that:

• ĝu1q = t1c
k
1 and ĝ

u′1
q = t1c

k′
1 s.t. ĝ

u1−u′1
q = ck−k

′

1 ,

• hpu1fu2 = t2c
k
2 and hpu

′
1fu

′
2 = t2c

k′
2 s.t. hpu1−u

′
1fu2−u

′
2 = ck−k

′

2 .

Since k 6= k′ and q is prime, with overwhelming probability it holds that k − k′ is invertible
mod q. In the following we assume this is the case4.

Let Rewind be a (probabilistic) procedure that creates k, k′, u1, u2, u
′
1, u
′
2 in this way. A

concrete algorithm for Rewind is given in [DF02, Appendix A]. It runs in expected time
56/accview,P ∗ , counting the time to do the protocol once with P ∗ as one step. Assume without
loss of generality that k > k′ and suppose that (k − k′) divides (u1 − u′1) in Z. We denote:

ν1 := ĝ
(u1−u′1)/(k−k′)
q c−1

1 and ν2 := hp(u1−u
′
1)/(k−k′)f (u2−u′2)·(k−k′)−1c−1

2 .

4In fact in our applications C < q, so this will hold with probability 1.

100

CHAPTER 3. ENRICHING THE CL FRAMEWORK

If (k − k′) divides (u1 − u′1) in Z, and ν1 = ν2 = 1, we say (k, k′, u1, u2, u
′
1, u
′
2) is a set of good

values. Suppose the set of values is good. Then V ′s check on the size of u1, u
′
1 implies that

(u1 − u′1)/(k − k′) is in the required interval, and one can now easily verify that P ∗ knows
((hp, ct); ((u2 − u′2) · (k − k′)−1 mod q, (u1 − u′1)/(k − k′))) ∈ REnc. Consequently:

from a set of good values one can extract a witness for (hp, ct).

A set of values (k, k′, u1, u2, u
′
1, u
′
2) is said to be bad if (k− k′) divides (u1−u′1) but ν1 6= 1

or ν2 6= 1; or if (k − k′) does not divide (u1 − u′1).
Given the above, we can define our extractor M :

M repeatedly calls Rewind (for the same (hp, ct)) until it gets a set of good values.

We now consider the probability M fails on view view, setting the polynomial p from Defini-
tion 2.24 to the constant 112. This choice for p is due to the running time of Rewind, which
we recall is 56/accview,P ∗ , counting the time to do the protocol once with P ∗ as one step. By
choosing p = 112, we ensure that for any view on which M fails, the values produced by
Rewind are bad with probability at least 1/2, since otherwise M could expect to find a witness
for (hp, ct) after calling Rewind twice, which takes expected time 112

accview,P∗
6 p(λ)
accview,P∗−κ(λ) ; this

would contradict the fact M fails on view.
Let us now assume M fails on view view output by P ∗. This occurs with probability

Advκ,M,p
P ∗ . In this case, we build an algorithm A which uses Rewind to break either the

SR problem for class groups with input (ppCL, ĝq,Solve(·)), or the LO problem with input
(ppCL,Solve(·)). Specifically, A forwards (ppCL, ĝq, Solve(·)) to P ∗, as P ∗ expects to receive
from the relation generator; calls Rewind and hopes to get a set of bad values. However, if
Rewind runs more than 448/κ(λ) times with P ∗, A aborts and stops.

Observe that since the Rewind procedure runs the protocol with P ∗ at most 56/accview,P ∗ 6
56/κ(λ) times, Rewind is allowed to run for at least 8 times its expected running time. Moreover
since we assume M fails on view view, the values produced by Rewind are bad with probability
at least 1/2. Hence, given M fails, with significant probability A gets a set of bad values. So
let E be the event that M fails on view and Rewind has returned a set of bad values.

Claim. If E occurs, A solves either the SR problem, or the LOC problem with probability
p∗ 1/2.

Proof of Claim Since E occurs, A has obtained from Rewind a set of bad values k, k′, u1, u2,

u′1, u
′
2 s.t. ĝ

u1−u′1
q = ck−k

′

1 and hpu1−u
′
1fu2−u

′
2 = ck−k

′

2 . If (k−k′) divides (u1−u′1) then ν1 6= 1 or
ν2 6= 1 where ν1 and ν2 are defined as above. Clearly νk−k

′

1 = νk−k
′

2 = 1. And since k−k′ < C,
and ν1, ν2 ∈ Ĝ this is a solution for the LOC problem.

Now consider the case where (k − k′) does not divide (u1 − u′1). We denote d := gcd(k −
k′, u1 − u′1) and e := (k − k′)/d; and split in two cases:

Case 1: If e = 2m for some positive integer m (in this case solving the root problem is easy).
Our goal here is to show that since P ∗ does not have control over k, k′ this case happens
with probability 6 1/2, given that E occurs. Hence the Case 2 – where we solve either
the SR problem or the LOC problem – happens with significant probability, given E.
Indeed, observe that for e to be a power of 2, it must hold that (k − k′) is a multiple
of 2m, and in particular a multiple of 2. However since k and k′ are chosen uniformly at
random from {0, . . . , C − 1} by the honest V , with probability 1/2, (k − k′) is an odd
integer.

101

CHAPTER 3. ENRICHING THE CL FRAMEWORK

Case 2: If e is not a power of 2. It holds that d < |k− k′| < C. Choosing γ and δ s.t. γ(k− k′) +

δ(u1 − u′1) = d one has ĝdq = ĝ
γ(k−k′)+δ(u1−u′1)
q = (ĝγq c

δ
1)k−k

′
. Now let:

µ := (ĝγq c
δ
1)
(k−k′)
d ĝ−1

q .

Clearly µd = 1, so since d < C, if µ 6= 1, A has a solution to the LOC problem in Ĝ.
Now suppose that µ = 1. We can rewrite the above as:

ĝq = (ĝγq c
δ
1)(k−k′)/d,

which gives a solution for the SR problem with input ĝq, which is e = (k − k′)/d and
X := ĝγq c

δ
1, s.t. ĝq = Xe, e > 1 and e is not a power of 2. The claim above now follows.

To summarize, for every view view where M fails, running Rewind will fail to solve either
the SR problem or the LO problem with probability at most 1−p∗/2 6 3/4. Hence if Advκ,M,p

P ∗

is a non negligible function of the security parameter, then the resulting probability that A

can break either the SR problem or the LO problem is non negligible, thereby contradicting the
assumption these problems are hard. Thus Advκ,M,p

P ∗ (λ) = negl(λ) and the protocol of Fig. 3.9
is an argument of knowledge for REnc with soundness error C/4.

Efficient ZKAoK for Rcl-dl

The interactive proof provided for Rcl-dl in Section 3.6.1 uses binary challenges, consequently
in order to achieve a satisfying soundness error of 2−λ, the proof must be repeated λ times.
Moreover the proof Σlcm-dl for Rlcm-dl, though more efficient, does not prove exactly the same
relation, and hence requires parties to perform large exponentiations on the received cipher-
texts. Though for some protocols, this may be acceptable (e.g. depending on whether parties
need to be online when they perform this exponentiation), often the cost of this exponentiation
is prohibitive. Relying on the SR and LO assumptions for GenCL, we describe in Fig. 3.10 a
much more efficient ZKAoK for the relation:

Rcl-dl := {(hp, (c1, c2), Q); (x, r) | hp ∈ Ĝ; c1 = ĝrq ∧ c2 = fxhpr ∧Q = xP},

where C denotes the size of the challenge set, and A ∈ N. Theorem 3.32 states the security of
the protocol of Fig. 3.10.

Theorem 3.32. Let {0, . . . , C−1} be the challenge set for the interactive protocol of Fig. 3.10.
Suppose the SR assumption holds for GenCL and the LOC assumption holds for GenCL. Then
the interactive protocol of Fig. 3.10 is an argument of knowledge for Rcl-dl with knowledge
error κ = 4/C. If r ∈ {−S, . . . , S}, and SC/A is negligible, where A ∈ N, then the protocol is
special honest verifier statistical zero-knowledge.

Proof. Completeness. If P knows r ∈ {−S, . . . , S} and x ∈ Z/qZ s.t. (hp, (c1, c2), Q); (x, r) ∈
Rcl-dl, and if both parties follow the protocol then V accepts.

Special honest verifier zero-knowledge. Given hp, ct = (c1, c2), Q and k ←↩ {0, . . . , C − 1}, a
simulator can sample u1 ←↩ {−CS, . . . , SC+A−1} and u2 ←↩ Z/qZ, compute t1 := ĝu1q ·(c1)−k,
t2 := hpu1 · fu2 · (c2)−k and T := u2 · P − k · Q such that the transcript (t1, t2, T, k, u1, u2) is
indistinguishable from a transcript produced by a real execution of the protocol where V runs
on input (hp, c1, c2, Q, P).

102

CHAPTER 3. ENRICHING THE CL FRAMEWORK

The relation generator Rcl-dl:

1. Run ppCL := (s̃, g, f, gq, Ĝ, G, F,Gq)← Gen(1λ, q).

2. Let S := 10 · s̃ ·
√
λ, and set A ∈ N. Sample t←↩ Dq and let ĝq := gtq.

3. Output Rcl-dl; (ppCL, ĝq,Solve(·)); and the description of an additive prime order group
(G, P, q).

Input : (r, x) and (hp, c1, c2, Q, P) Input : (hp, c1, c2, Q, P)
r1 ←↩ {0, . . . , A− 1}

r2 ←↩ Z/qZ
t1 := ĝr1q

t2 := hpr1f r2

T := r2P
t1, t2, T−−−−−−−−−→ k ←↩ {0, . . . , C − 1}

k←−−−−−−−−−
u1 := r1 + k · r ∈ Z

u2 := r2 + k · x ∈ Z/qZ
u1, u2−−−−−−−−−→ Check u1 ∈ {−SC, . . . , SC +A− 1} and

u2 ∈ Z/qZ and hp, c1, c2, t1, t2 ∈ Ĝ
and ĝu1q = t1 · (c1)k and T + k ·Q = u2 · P

and hpu1fu2 = t2 · (c2)k

Figure 3.10: ZKAoK for Rcl-dl.

Computational soundness. The proof proceeds exactly as that of Theorem 3.31. The only
difference being that for a set (k, k′, u1, u2, u

′
1, u
′
2) of good values (defined in exactly the same

way), it holds that ((hp, ct,Q); ((u2 − u′2) · (k − k′)−1 mod q, (u1 − u′1)/(k − k′))) ∈ Rcl-dl, such
that one can thus extract a witness for a statement (hp, ct,Q) of relation Rcl-dl.

103

CHAPTER 3. ENRICHING THE CL FRAMEWORK

104

Chapter 4

Functional Encryption for
Computing Inner Products

In this chapter we devise generic constructions for building inner product functional encryption
schemes from projective hash functions, proven secure against passive and active adversaries
respectively. This involves defining new properties for projective hash functions. Our proofs
notably improve the tightness of security reductions for generic inner product functional en-
cryption, thereby allowing to implement more efficient schemes for a given security level. We
instantiate our constructions from the running examples of Chapter 3, and retrieve pre-existing
schemes, along with new schemes from class group cryptography, which are among the most
efficient inner product functional encryption schemes to date.

State of the Art

From functional encryption to inner product functional encryption. Traditional
public key encryption provides an all-or-nothing approach to data access: given a cipher-
text encrypting m, a receiver either decrypts and recovers the entire message m, or learns
nothing about the encrypted message. Since many real life applications call for a more sub-
tle disclosure of information, according to a receiver’s privileges, functional encryption (FE)
[SW05,BSW11,O’N10] emerged from a series of refinements of PKE, allowing to control how
much of the data each user can recover. Specifically, FE allows for a receiver to recover a
function f(m) of the encrypted message m, without revealing anything else about m. The
primitive derives functional decryption keys skfi – associated to specific functionalities fi –
from a master secret key msk; these are delivered to the appropriate recipients. A single ci-
phertext c encrypting plaintext m is made available, from which a user possessing skfi can
recover fi(m) = Dec(ski, c).

Realising functional encryption, which attains a satisfying level of security, for any com-
putation has proven difficult: all such existing constructions are far from practical, and ei-
ther bound the number of decryption keys the adversary can request (e.g. [SS10, GVW12,
GKP+13]), or rely on strong cryptographic assumptions such as the existence of multilinear
maps [GGH13a, GGHZ16] or indistinguishability obfuscation [GGH+13b, BKS18]. Hence re-
searchers started focussing on functional encryption restricted to the computation of specific
classes of functions, in the hope that such primitives could be implemented efficiently under
well understood cryptographic assumptions, while being efficient enough to benefit concrete
practical applications.

One notable example is the study of inner-product functional encryption (IPFE), as first
formalised by Abdalla et al. in [ABDP15], which restricts the computed functionality to the
inner product of two vectors (one resulting from a decryption key, the other from a message).
This restriction has two benefits: developing our understanding of FE, and a range of practical

105

CHAPTER 4. FUNCTIONAL ENCRYPTION FOR COMPUTING INNER PRODUCTS

applications. These applications include the computation of weighted averages and sums for
statistical analysis on encrypted data, where the statistical analysis itself has sensitive infor-
mation; the evaluation of polynomials over encrypted data [KSW08] and [ALS16, Appx. B];
the construction of bounded collusion FE for all circuits [ALS16]; the construction of trace-
and-revoke systems [ABP+17]; and more recently the construction of non zero inner product
encryption (NIPE) schemes [KY19], which themselves are used to build identity-based revo-
cation (IBR) schemes (a type of broadcast encryption scheme allowing for efficient revocation
of users’ ability to decrypt).

Increasing security of IPFE. The first IPFE schemes relying on standard assumptions
were put forth by Abdalla et al. in 2015 [ABDP15]. They provided a generic construction
to devise IPFE schemes which are secure against passive adversaries in the selective model.
Selective security requires that adversaries commit to challenge messages before seeing the
public parameters of the scheme, or being able to perform any key derivation queries. Though
of great theoretical interest, such a notion of security does not reflect the power of an attacker
in the real world, hence such schemes are not sufficiently secure for practical applications.
In the public key setting, the first adaptively secure (ind-fe-cpa) schemes were put forth by
Agrawal et al. [ALS16] under the learning with errors (LWE), DDH and DCR assumptions.
Conversely to [ABDP15], the schemes of [ALS16] are not generic. Shortly afterwards (and
independently), Abdalla et al. [ABDP16] provided a generic construction for ind-fe-cpa-secure
IPFE, though when instantiated from concrete assumptions, the security reductions are less
tight than those obtained in [ALS16].

Zhang et al. [ZMY17] and then independently, and more formally Benhamouda et al.
[BBL17], where the first to consider security against active adversaries for IPFE (ind-fe-cca-
security). Benhamouda et al. provide generic constructions from projective hash functions
– as defined in Chapter 3 – satisfying a number of properties which they introduce, to both
ind-fe-cpa and ind-fe-cca-secure IPFE schemes. They instantiate their generic construction from
the DDH, the DCR, and the matrix DDH assumptions [EHK+13].

Regarding simulation based security, Agrawal et al. [ALMT20a], building upon the work
of [Wee17] showed that variants of the schemes in [ALS16] can be proven adaptively secure
in the simulation based security model, these are the first IPFE schemes which are proven
adaptively secure in this model.

Increasing expressiveness of IPFE. Independently, many concurrent works have aimed at
increasing the expressiveness of IPFE. Function privacy for IPFE was first realised by Bishop
et al. using bilinear maps [BJK15,DDM16]; intuitively, this means that a secret key skf should
not reveal any more information on the function f it encodes than what is implicitly leaked
by f(x). Then IPFE was extended to the multi-input setting: multi-input FE, introduced
by Goldwasser et al. in [GGG+14], is a generalisation of FE to the setting of multi-input
functions, so that the function can be computed over several different inputs that can be
encrypted independently. The first construction for multi-input IPFE, relying on standard as-
sumptions (the k-Lin assumption in prime-order bilinear groups), was put forth by Abdalla et
al. in [AGRW17]. Datta et al. [DOT18] were the first to provide a function-hiding multi-input
IPFE scheme (still from pairings). Then in [ACF+18], Abdalla et al. provide new techniques
converting single-input IPFE into multi-input schemes for the same functionality. This leads
to multi-input IPFE schemes from a range of assumptions e.g. DDH, LWE, and DCR. In
[Tom19], Tomida presents a generic conversion from function-hiding IPFE to function-hiding
multi-input IPFE. He also improves the state of the art for security of function hiding IPFE
by providing the first tightly secure schemes (security does not degrade with the number of
ciphertexts from different users granted to the adversary); these rely on a generalisation of

106

CHAPTER 4. FUNCTIONAL ENCRYPTION FOR COMPUTING INNER PRODUCTS

the DDH assumption. The multi-client setting (similar to multi-input FE, but where each
input is generated by a different party) was first adressed by Chotard et al. in [CDG+18a]
(which they later improve in [CDG+18b]). They provide such a scheme from the DDH as-
sumption, along with a decentralised scheme relying on pairings, where one no longer needs
a trusted authority to produce decryption keys. Abdalla et al. [ABKW19] provide a compiler
transforming any multi-client IPFE scheme (satisfying some properties) into a decentralised
scheme. They thereby obtain decentralised schemes in the standard model from LWE, DDH
and DCR. Shortly afterwards, Abdalla et al. [ABG19] presented a generic construction for
multi-client IPFE from single-input IPFE in the standard model (they also adapt the com-
piler of [ABKW19] to obtain a decentralised version of their scheme). On a different note,
Do et al. [DPP20] introduce traceability, which prevents users (called traitors) from leaking
or selling their functional decryption key; they also provide a solution from DDH with the
help of pairings. As a final example, in [ACGU20], Abdalla et al. combine an access control
functionality with the possibility of performing linear operations on encrypted data provided
by IPFE.

Our Contributions

The aforementioned studies demonstrate the huge attention IPFE has received, and the effort
which has been put into diversifying the provided functionalities. However much less effort
has been applied to reinforcing security. We focus on providing efficient and generic solutions
which strengthen the security of standard IPFE; an interesting line for future work would be
to consider how the aforementioned extensions in terms of functionality would articulate with
our generic constructions. In this work, we provide some of the most efficient IPFE schemes to
date from class group cryptography, and we hugely improve the tightness of security proofs for
generic IPFE, thereby allowing to implement more efficient schemes for a given security level.
Precisely, we devise generic constructions for building ind-fe-cpa and ind-fe-cca-secure IPFE
schemes from projective hash functions. Though these generic schemes may appear similar to
those of [BBL17], we require starkly different properties of our underlying PHFs, while our
proofs, which are notably different to theirs, are much tighter.

We observe that, as in many proposals for IPFE schemes (e.g. [ALS16,CLT18a,ALMT20b]),
the constructions provided by [BBL17] follow the lines of the generic construction of [ABDP15].
They also use similar proof techniques to [ABDP15] even though, as previously mentioned,
these proofs are for selective security, and so the challenger sees the challenge messages chosen
by the adversary before setting the scheme’s public parameters and choosing the master key
pair. This somewhat explains why, so as to attain adaptive security (both against passive and
active adversaries), [BBL17] have their challenger guess the difference between the challenge
messages. Precisely denoting msk the master secret key sampled by the challenger, using the
difference in the challenge messages m0−m1, they build another master secret key msk′, such
that using msk′ in place of msk is unnoticeable to the adversary. However, if the initial guess
for m0 −m1 is wrong, the challenger aborts. This results in an exponential loss in a term
of the security reduction, which appears in both their ind-fe-cpa and their ind-fe-cca-secure
schemes. For their only scheme able to decrypt inner products of any size (based on DCR),
parameters must be well chosen to compensate for the security loss. This multiplies key sizes
by a factor which grows (at least) linearly in the dimension and in the security parameter λ.
When concretely instantiated, this results in schemes with large ciphertexts, decryption keys,
and timings for encryption and decryption which are prohibitive for practical use.

Though their constructions are similar, [ALS16] use a very different proof technique. For
each of their considered assumptions, they provide a specific proof, all of which follow a similar

107

CHAPTER 4. FUNCTIONAL ENCRYPTION FOR COMPUTING INNER PRODUCTS

structure: they carefully evaluate the maximum information leaked to the adversary by the
public key, decryption key queries and by the challenge ciphertext, and analyse the distribu-
tion of keys used to mask confidential information conditioned on the view of the adversary.
Using conditional probabilities allows one to carry out the analysis a posteriori, while ensuring
security against adversaries which are adaptive with regard to key queries and the choice of
the challenge messages.

This technique resembles that used in [CS02] where Cramer and Shoup’s definition of
smoothness allows to do exactly the above, only in the context of PKE instead of IPFE.

Inspired by the proof techniques of [ALS16] for non generic ind-fe-cpa-secure IPFE, we
define the notion of vector-smoothness (cf. Section 4.2.3) for PHFs, which extends smoothness
to the IPFE setting. This property allows us to devise a generic construction for ind-fe-cpa-
secure IPFE from PHFs. Our requirements on the underlying PHFs differ notably from those
of [BBL17], and we obtain a tighter security proof. We instantiate this generic construction
from the running examples of Chapter 3. When instantiated from DDH or DCR, we obtain
the schemes of [ALS16], while instantiations from HSM-CL and DDH-f yield the FE schemes
computing inner products in Z which we published in [CLT18a]. These are the most efficient
ind-fe-cpa-secure IPFE schemes to date. We thereby provide a unified view of all these schemes,
extracting the essence of their multiple proofs. This explains why, in this thesis, we choose to
present our schemes in a different light to that done in the work we published in [CLT18a],
since we are able to retrieve them from a generic approach.

Further extending the ideas of Cramer and Shoup, who use universal2 PHFs to build
ind-cca-secure PKE, we also define a new property for PHFs called vector-universality (cf.
Section 4.2.4). This allows us to devise a generic construction for ind-fe-cca-secure IPFE from
PHFs. Again, the resulting scheme is essentially that of [BBL17], but with notably different
properties required of the underlying PHFs, and a much tighter security proof. We further
note that though the comparison is quite involved (cf. Appendix A), for equivalent security
goals, the properties we require of our PHFs to build IPFE are implied by those required in
[BBL17]. We thereby provide the first generic constructions for ind-fe-cpa and ind-fe-cca secure
IPFE which do not suffer an exponential loss in a term of the security reduction. Instantiations
of our constructions demonstrate that ind-fe-cca-secure IPFE is practical.

Related publications and submissions. Most of the work in this chapter can be found in:

• [CLT18a] For instantiations from HSM-CL and DDH-f of our ind-fe-cpa-secure IPFE
schemes in Z and modulo a prime, along with efficiency comparisons to [ALS16].

• [CLT20] (submission) For the generic constructions, both ind-fe-cpa and ind-fe-cca-secure,
their security proofs and efficiency comparisons to [BBL17].

Road map

In Section 4.1 we formally define FE, the security models adopted for our constructions, and
the restriction of FE to the inner product functionality. As mentioned previously, we need
to evaluate the maximum information leaked to the adversary by the public key, decryption
key queries and by the challenge ciphertext. In order to capture this maximum information
in a generic way, in Section 4.2 we define compatibility and security properties required of
the underlying PHFs. To help the reader assimilate technical concepts, all definitions and
properties are illustrated with the running examples from DDH, HSM-CL and DDH-f studied
in Chapter 3. Next in Section 4.3 we provide a generic construction secure against passive
adversaries, which we also instantiate from our running examples, thereby retrieving the DDH

108

CHAPTER 4. FUNCTIONAL ENCRYPTION FOR COMPUTING INNER PRODUCTS

scheme of [ALS16], and our schemes of [CLT18a]. In Section 4.3.2 we consider modular IPFE,
i.e. functional encryption computing inner products modulo an integer p, where p may or
may not be prime. We discuss how modular IPFE schemes fit into out framework, so as to
retrieve the stateful IPFE scheme from DCR of [ALS16]; we also describe stateful modular
IPFE schemes arising from DDH-f and HSM-CL. In Section 4.4 we further extend the former
generic construction to deal with stronger active adversaries, and detail instantiations from
our running examples. As detailed in Section 4.5, the impact of our results on the practical
efficiency of protocols secure against active adversaries is staggering.

Finally, in Section 4.6 we discuss future perspectives. Namely we detail an interesting
application of our work: using the generic construction of [KY19] one can build IBR schemes
where the collusion and misbehaviour of users does not compromise the scheme’s security.
In this same section, building upon the techniques of [Wee17, ALMT20a], we discuss which
properties would be required of the underlying PHFs to further attain security in the simulation
based model.

4.1 Inner Product Functional Encryption
We here first define general functional encryption and the functionality considered in this
thesis, i.e. the inner product functionality. We next provide security definitions against active
and passive adversaries, in both the indistinguishability game based model, and the stronger
simulation model.

4.1.1 Inner Product Functional Encryption

Inner Product Functional Encryption (IPFE) is a special case of functional encryption, as first
formalised by Boneh, Sahai and Waters in [BSW11]. Let us first provide the definition of a
functionality.

Definition 4.1 (Functionality). A functionality F = {Fλ}λ∈N defined over (K,M) is a func-
tion F : K×M → Σ∪ {⊥}, where M = {Mλ}λ∈N is a message space, K = {Kλ}λ∈N is a key
space and Σ is an output space, which does not contain the special symbol ⊥.

Definition 4.2 (Functional encryption scheme). A functional encryption (FE) scheme for a
functionality F ∈ {Fλ}λ∈N over (K,M) is a tuple (Setup,KeyDer,Enc,Dec) of algorithms with
the following specifications:

• Setup(1λ) is a PPT algorithm which on input 1λ, outputs a master public key mpk and
a master secret key msk;

• KeyDer(msk, k) is a PT algorithm which on input msk and a key k ∈ K, outputs a
functional decryption key skk;

• Enc(mpk,m) is a PPT algorithm which on input mpk and a message m ∈M, outputs a
ciphertext c;

• Dec(mpk, skk, c) is a DPT algorithm which on input mpk, a functional decryption key
skk and a ciphertext c ∈ C, outputs v ∈ Σ ∪ {⊥}.

Correctness requires that for all (mpk,msk) ← Setup(1λ), all keys k ∈ K and all messages
m ∈ M, if skk ← KeyDer(msk, k) and c ← Enc(mpk,m), with overwhelming probability it
holds that, if v ← Dec(mpk, skk, c) then v = F (k,m) whenever F (k,m) 6=⊥.

109

CHAPTER 4. FUNCTIONAL ENCRYPTION FOR COMPUTING INNER PRODUCTS

The Inner Product Functionality

We consider the inner product functionality, i.e. given a ring R and two efficiently recognisable
subsets M and K of R`, the functionality is F : K×M → R∪{⊥} such that F (x,y) = 〈x,y〉 ∈
R.

4.1.2 Security

Intuitively security for FE states that given the ciphertext of a message m, the only information
obtained from the decryption key skk is the evaluation of the function F (k,m). There exist
two main security definitions for FE, indistinguishability-based and a stronger simulation-based
security. The former – which is the model we mainly consider – asks that no PT adversary can
distinguish ciphertexts of any two plaintexts m0 and m1 of its’ choice. One can grant various
degrees of power to the adversary, thereby defining different levels of security [BSW11,O’N10].
Security against chosen plaintext attacks captures the idea that a user, who is granted specific
decryption keys, learns nothing more than the information these keys are intended to reveal.
It does not however capture the scenario where an adversary (said to be active) additionally
coerces honest users to run the decryption protocol (with decryption keys unknown to the
adversary) on potentially malformed ciphertexts. To deal with such active adversaries, one
must ensure security against chosen ciphertext attacks [NP15,BBL17].

The definitions we provide are for adaptive security, meaning the adversary has access to the
systems’ public parameters, and can perform a series of key derivation requests before choosing
the challenge messages. The weaker selective security model requires the adversary commits to
challenge messages before seeing the public key (or performing any queries). We first present the
existing game-based definition of security against passive adversaries as provided in [BSW11].
Then we consider a natural extension which deals with active adversaries.

In this section we consider an FE scheme FE := (Setup,KeyDer,Enc,Dec) for functionality
F over message space M = {Mλ}λ∈N, and key space K = {Kλ}λ∈N, and let A be a PPT
adversary.

Indistinguishability against Chosen Plaintext Attacks

We define standard security experiment against adaptive passive adversaries for FE.

The experiment Expind-fe-cpaFE,A (λ). For λ ∈ N we denote by Expind-fe-cpaFE,A (λ) the random variable
that is defined via the following experiment involving the scheme FE, an adversary A, and a
challenger C:

1. Setup phase: C samples (mpk,msk)← Setup(1λ); and β ←↩ {0, 1}.

2. Pre-challenge phase: A on input (1λ,mpk) adaptively issues queries (key, k) where
k ∈ Kλ. Upon receiving the i-th query (key, ki), C computes skki ← KeyDer(msk, ki);
and sends skki to A.

3. Challenge phase: A outputs m0,m1 ∈M; C computes c∗ ← Enc(mpk,mβ) and sends
it to A.

4. Post-challenge phase: A adaptively issues queries as in the pre-challenge phase.

5. Output phase: A outputs β′. The output of the experiment is 1 if and only if β = β′.

110

CHAPTER 4. FUNCTIONAL ENCRYPTION FOR COMPUTING INNER PRODUCTS

Valid adversaries. As standard in FE, we rule out adversaries that can easily distinguish
between the challenge messages m0 and m1 using their queries. Specifically, an ind-fe-cpa
adversary is valid if all key queries (key, k) satisfy F (k,m0) = F (k,m1).

Having defined the experiment Expind-fe-cpaFE,A (λ) and the notion of a valid adversary, we are
now ready to present the notion of adaptive security against chosen plaintext attacks for FE
schemes.

Definition 4.3. An FE scheme FE for functionality F over a message space M, and a key
space K is adaptively secure against chosen plaintext attacks (ind-fe-cpa) if for any PPT valid
adversary A, it holds that:

Advind-fe-cpaFE,A (λ) def=
∣∣∣Pr

[
Expind-fe-cpaFE,A (λ) = 1

]
− 1

2

∣∣∣ = negl(λ).

Indistinguishability against Chosen Ciphertext Attacks

We here provide a definition which additionally deals with active adversaries. Since such
adversaries may corrupt data, we allow them to perform decryption queries for ciphertexts of
their choice.

The experiment Expind-fe-ccaFE,A (λ). For λ ∈ N we denote by Expind-fe-ccaFE,A (λ) the random variable
that is defined via the following experiment involving the scheme FE, the adversary A, and a
challenger C:

1. Setup phase: C samples (mpk,msk)← Setup(1λ); and β ←↩ {0, 1}.

2. Pre-challenge phase: A on input (1λ,mpk) adaptively issues queries:

• (key, k) where k ∈ K. Upon receiving the i-th query (key, ki), C computes skki ←
KeyDer(msk, ki); and sends skki to A.

• (decrypt, c, k) where k ∈ K and c is a ciphertext. Upon receiving the j-th query
(decrypt, cj , kj), C computes skkj ← KeyDer(msk, kj); resj ← Dec(mpk, skkj , cj);
and sends resj to A.

3. Challenge phase: A outputs m0,m1 ∈M; C computes c∗ ← Enc(mpk,mβ) and sends
c∗ to A.

4. Post-challenge phase: A adaptively issues queries as in the pre-challenge phase.

5. Output phase: A outputs β′. The output of the experiment is 1 if and only if β = β′.

Valid adversaries. An ind-fe-cca adversary is valid if every key query (key, k) satisfies
F (k,m0) = F (k,m1), and every decryption query (decrypt, c, k) satisfies c 6= c∗.

Having defined the experiment Expind-fe-ccaFE,A and the notion of a valid adversary, we are ready
to present our notion of adaptive security against chosen ciphertext attacks for FE schemes.

Definition 4.4. An FE scheme FE for functionality F over a message space M, and a key
space K is adaptively secure against chosen ciphertext attacks (ind-fe-cca) if for any PPT valid
adversary A, it holds that:

Advind-fe-ccaFE,A (λ) def=
∣∣∣Pr

[
Expind-fe-ccaFE,A = 1

]
− 1

2

∣∣∣ = negl(λ).

111

CHAPTER 4. FUNCTIONAL ENCRYPTION FOR COMPUTING INNER PRODUCTS

Remark. In the specific case where the considered functionality is the inner product, such a
level of security was already considered in [ZMY17,BBL17]. The above definition of ind-fe-cca-
security is equivalent to that used in [BBL17]. The work of Zhang et al. [ZMY17] does not
provide a formal definition for ind-fe-cca-security. However, the model they use is very restric-
tive as they bound the number of key derivation queries allowed by the adversary. Indeed, in
the protocol they provide, computing inner products for vectors of length `, if an adversary
obtains ` decryption keys (potentially for the same key k ∈ K), it can then trivially break
ciphertext integrity, and thereby force the protocol to run in unprescribed conditions.

4.2 Building IPFE from PHF
In Sections 4.3 and 4.4 we provide generic constructions for ind-fe-cpa and ind-fe-cca-secure
inner product functional encryption from PHFs. For correctness of these constructions, we first
introduce some compatibility properties which the PHF must satisfy. For security we define two
new properties: vector-smoothness and vector-universality. If the PHF used for confidentiality
is vector-smooth, one can build ind-fe-cpa-secure inner product functional encryption schemes.
To further attain ind-fe-cca-security, the PHF used to ensure ciphertext integrity must be
vector-universal.

4.2.1 Compatibility Properties for PHFs

To build inner product functional encryption from a projective hash function, one needs the
PHF to be compatible with the ring in which inner products are computed; one also needs to
impose restrictions on the message space M and the space K from which decryption keys are
derived. Throughout this chapter, we restrict ourselves to inner products computed in the ring
R := Z or R := Z/qZ for some prime q.

Definition 4.5 (ipfe-compatibility). Let R be a ring, either Z or Z/qZ for some prime
q. Let SM := (X̂,X, L̂,W,R) be an SMP, and consider H := (hashkg, p̂rojkg, projkg,
hash, ̂projhash, projhash) the associated PHF. One says H is (R, a, f, nf , `,M,K)-ipfe-compa-
tible if:

• the hash key space is Khk := Ra for some positive integer a;

• H is key homomorphic, where the (additive) group operation associated to Khk is the
addition of R performed point-wise;

• the co-domain Π of hash is a finite Abelian group which contains a cyclic subgroup F ,
generated by f , of order nf ;

• if R = Z/qZ then F = Π is of prime order nf = q;

• M and K are efficiently recognisable subsets of R`, for some positive integer `;

• there exists an efficient algorithm logf which, for all m ∈ M, k ∈ K, computes
logf (f 〈m,k〉) = 〈m,k〉 ∈ R.

Remark. An EPHF eH built from an (R, a, f, nf , `,M,K)-ipfe-compatible PHF H via the
generic construction of Section 3.4.3 is (R, 2a, f, nf , `,M,K)-ipfe-compatible.

Notation 4.6. Let R be a ring, either Z or Z/qZ for some prime q, and M a subset of R.
We denote:

∆M := {x0 − x1 | x0 6= x1 ∈M}.

112

CHAPTER 4. FUNCTIONAL ENCRYPTION FOR COMPUTING INNER PRODUCTS

Running Example 1 – DDH

Here R := Z/qZ and a := 2 which is consistent with Khk = (Z/qZ)2 and Kehk = (Z/qZ)4.
Recall that hash : Z/qZ2 ×G2 → G, where G is a cyclic group of prime order q generated by
g. Thus we set f := g, which generates F := G and nf := q. This implies that the algorithm
logf is the DL in G. Note that in a DDH group the DL problem is hard by assumption, so
computing logf can only be done efficiently for small values of the inner product. Thus M and
K are subsets of (Z/qZ)` s.t. ∀m ∈ M, k ∈ K, logg(g

〈m,k〉) = 〈m,k〉 ∈ Z/qZ is computable
in time poly(λ). To summarise, for ` ∈ N,

Hddh is a (Z/qZ, 2, g, q, `,M,K)-ipfe-compatible PHF.

Running Example 2 – HSM-CL

Here R := Z and a := 1 which is consistent with Khk = Z and Kehk = Z2. Recall that
hash : Z× Ĝ → Ĝ, where Ĝ which is a finite Abelian group, and F is a cyclic subgroup of Ĝ
of prime order q, generated by f . We set:

M = K = {x ∈ Z` : ||x||∞ <

√
q

2`
}.

Let us now describe our implementation for algorithm logf . For m ∈M, k ∈ K, let us denote

M := f 〈m,k〉; observe that since ||m||∞ and ||k||∞ <
√

q
2` , it holds that −q/2 < 〈m,k〉 < q/2.

First one uses the Solve algorithm of Definition 3.1 to compute sol ← Solve(M), then if
sol > q/2, one returns (sol − q), otherwise one returns sol. With this implementation it holds
that logf (f 〈m,k〉) = 〈m,k〉 in Z. To summarise, for ` ∈ N,

Hhsm-cl is a (Z, 1, f, q, `,M,K)-ipfe-compatible PHF.

Running Example 3 – DDH-f

Here R := Z and a := 2, which is consistent with Khk = Z2 and Kehk = Z4. Recall that
hash : Z2 × Ĝ2 → Ĝ. For algorithm logf we use the same as that described for running

example 2. Consequently, for ` ∈ N, letting M = K = {x ∈ Z` : ||x||∞ <
√

q
2`}, it holds

that:

Hddh-f is a (Z, 2, f, q, `,M,K)-ipfe-compatible PHF.

4.2.2 Associated Matrix

We here define the notion of a matrix Bm associated to a vector m. In our upcoming con-
structions, m will be the difference between the two challenge message vectors. As such, valid
adversaries can request decryption keys associated to vectors k ∈ K satisfying k ∈ m⊥. The
matrix Bm is constructed in such a way that any such k can be written as a linear combi-
nation of the top ` − 1 rows of Bm. Conversely, any k /∈ m⊥ – for which a decryption key
trivially reveals which of the challenge messages was encrypted – has some contribution from
the last row of Bm. The secret values of our protocols, when projected onto this last row, must
conserve sufficient entropy for security to hold.

Definition 4.7. Let R be either the ring Z or Z/qZ for some prime q; ` and a be posi-
tive integers; consider an (R, a, f, nf , `,M,K)-ipfe-compatible projective hash function H; and
a non-zero vector m ∈ R`. We say Bm ∈ R`×` is a matrix associated to m if, denoting

113

CHAPTER 4. FUNCTIONAL ENCRYPTION FOR COMPUTING INNER PRODUCTS

(b1, . . . , b`) the rows of Bm it holds that: (1) Bm is invertible mod nf ; (2) (b1, . . . , b`−1) form
a basis of m⊥; (3) b` /∈m⊥ and if R = Z then b` = m.

Lemma 4.8 states conditions to efficiently build a matrix associated to m.

Lemma 4.8. Let R be either the ring Z or Z/qZ for some prime q; ` and a be positive integers;
and consider an (R, a, f, nf , `,M,K)-ipfe-compatible projective hash function H, where nf is
either prime or hard to factor. From any m ∈ ∆M one can efficiently and deterministically
construct a matrix Bm ∈ R`×` associated to m.

Proof. If R = Z/qZ then by Definition 4.5, q = nf is prime. In this case we proceed
as suggested in [ALS16, Appx. E]: given m one deterministically generates a Z/qZ-basis
(b1, . . . , b`−1) ∈ (Z/qZ)(`−1)×` of m⊥. Let b` ∈ (Z/qZ)` be a vector outside the subspace
m⊥, also chosen in a deterministic manner. The resulting matrix B ∈ (Z/qZ)`×` whose rows
are the vectors b1, . . . , b` is invertible modulo q.

If R = Z then first observe that by Definition 4.5, one has logf (f 〈x,y〉) = 〈x,y〉 for any
x ∈M, y ∈ K. Since f is of order nf , this implies that vectors in M (resp K) are of bounded

norm, i.e. M and K are subsets of {x ∈ Z` : ||x||∞ <
√

q
2`}.

Without loss of generality, assume the n0 first coordinates of m ∈ Z` are zero (for some
n0), and all remaining entries are non-zero. The rows b1, . . . , b`−1 ∈ Z` of the following matrix
(due to [ALS16, Proof of Theorem 2]) form a basis of m⊥:

In0
−mn0+2 mn0+1

−mn0+3 mn0+2
.

−m` m`−1

 ∈ R(`−1)×`.

Letting b` := m, the matrix B ∈ R`×` whose rows are the vectors (b1, . . . , b`) is invertible
modulo nf . If nf is prime, from the norm bounds this is always true (this can be deduced from
[ALS16, Proof of Theorem 2]). If nf is composite, either B is invertible modulo nf , otherwise
its determinant reveals a non trivial factor of nf [ALS16].

Notation 4.9. The fact Lemma 4.8 builds Bm deterministically from m allows us to build
– from a random variable M taking values in ∆M – the matrix of random variables BM . We
will use this notation in our definitions and proofs. We denote bM1 , . . . , bM` the rows of BM .

4.2.3 Confidentiality

In our generic construction for building inner product functional encryption from projective
hash functions, the master secret key is a vector of ` hash keys of which adversaries can
request linear combinations. These linear combinations correspond to the functional decryption
keys granted to adversary. We here introduce a property called vector smoothness, ensuring
confidentiality given this extra leakage of information. Vector smoothness is an extension of
the definition of smoothness of [CS02], which ensures confidentiality given a PKE scheme’s
public parameters. In the context of IPFE, one also needs to deal with key derivation queries
performed by the adversary. Precisely, vector smoothness ensures that given the projection of
the master secret key on a hyperplane H, its projection onto a line orthogonal to H remains
uniformly distributed. This latter projection masks the challenge message in our constructions.
This new property allows to capture the techniques used in [ALS16] (to build ind-fe-cpa-secure

114

CHAPTER 4. FUNCTIONAL ENCRYPTION FOR COMPUTING INNER PRODUCTS

IPFE schemes from DDH and DCR). Consequently, the proofs of Lemmas 4.12 to 4.14 share
similarities with those of [ALS16, Thm. 1].

Definition 4.10 (δvs-vector-smooth over X on F). Let ` and a be positive integers. Let R

be a ring, either Z or Z/qZ for some prime q; SM := (X̂,X, L̂,W,R) be an SMP, and H the
associated PHF which we assume to be (R, a, f, nf , `,M, K)-ipfe-compatible. For i ∈ [`], let
hki ← hashkg(SM), and hk := (hk1, . . . , hk`)T . Consider a random variable M taking values
in ∆M and the associated matrix BM ∈ R`×`. Let X ←↩ X\L, and Y ←↩ U(F). Then H is
δvs(`)-vector-smooth over X on F if the following tuples of random variables are δvs(`)-close:

U := {M,X, p̂rojkg(hk), {(bMj)T · hk}j∈[`−1], hash((b
M
`)T · hk, X) · Y } and

V :=
{
M,X, p̂rojkg(hk), {(bMj)T · hk}j∈[`−1], hash((b

M
`)T · hk, X)

}
.

We next give a convenient reformulation of vector smoothness for PHFs which possess homo-
morphic properties and are decomposable.

Lemma 4.11. Using the same notations as in Definition 4.10, assume H is further homo-
morphic, key homomorphic and (Υ̂,Υ, F)-decomposable. Since X ∈X\L, there exist unique
(x,w) ∈ R and y ∈ 〈Υ〉 satisfying X = x · y. Then H is δvs-vector-smooth over X on F if and
only if the following distributions are δvs-close:

U′ := {M,X, p̂rojkg(hk), {(bMj)T · hk}j∈[`−1], Y } and

V′ :=
{
M,X, p̂rojkg(hk), {(bMj)T · hk}j∈[`−1], hash((b

M
`)T · hk, y)

}
.

Proof. Consider distributions U and V of Definition 4.10. Consider m ∈ ∆M, (x0, w0) ∈ R,
y0 ∈ 〈Υ〉, ĥpi ∈ Kĥp for i ∈ [`] and vj ∈ Ra for j ∈ [` − 1]. The first three coordinates of U

(or equivalently V) fix M = m; x = x0; w = w0; y = y0; p̂rojkg(hki) = ĥpi (which in turn
fixes hpi := projkg(hki) for some hpi ∈ Khp) for i ∈ [`]; and bMj)T · hk = vj for j ∈ [` − 1].
Consequently hash(hki, x) = projhash(hpi, x0, w0) for i ∈ [`].

Let us denote Bm the matrix associated to m built as per Lemma 4.8, and its rows
bm1 , . . . , b

m
` . Since M = m it holds that BM = Bm. Using the key homomorphism of H we see

that hash((bM`)T · hk, x) = hash((bm`)T · hk, x0) is fixed. And from the homomorphism of H it
holds that hash((bM`)T · hk, X) = hash((bm`)T · hk, x0) · hash((bM`)T · hk, y). It is now clear that
the statistical distance between U and V is equal to that between U′ and V′.

Running Example 1 – Hddh is vector-smooth

Lemma 4.12, whose proof is inspired by [ALS16, Thm. 1], states Hddh is vector smooth.

Lemma 4.12. The projective hash function Hddh is 0-vector-smooth (over G on G).

Proof. For i ∈ [`], let hki := (κ0,i, κ1,i) denote independent random variables following the
distribution U((Z/qZ)2); let κ0 := (κ0,1, . . . , κ0,`)T , κ1 := (κ1,1, . . . , κ1,`)T , and hk := (hk1, . . . ,
hk`)T . Consider a random variable M taking values in ∆M and the associated matrix BM .
For X ←↩ X\L, there exist unique α ∈ Z/qZ and β ∈ (Z/qZ)∗ s.t. X = (g0, g1)α � (1, g1)β.
As noted in Lemma 4.11, for γ ←↩ U(Z/qZ), we need to evaluate the distance between:

U =
{
M, (gα0 , g

α+β
1), {gκ0,i0 g

κ1,i
1 }i∈[`], {〈κ0, bi〉, 〈κ1, bi〉}i∈[`−1], g

γ
1

}

115

CHAPTER 4. FUNCTIONAL ENCRYPTION FOR COMPUTING INNER PRODUCTS

and V =
{
M, (gα0 , g

α+β
1), {gκ0,i0 g

κ1,i
1 }i∈[`], {〈κ0, bi〉, 〈κ1, bi〉}i∈[`−1], g

β〈κ1,b`〉
1

}
.

Consider m ∈ ∆M, α0, β0 ∈ Z/qZ, h ∈ (Z/qZ)`, v0,v1 ∈ (Z/qZ)`−1, and let us denote a :=
logg0(g1). It suffices to study the distance between the random variables Y := β〈κ1, b

M
` 〉 mod q

and γ conditioned on the conjunction of the following events: M = m; (α mod q, β mod q) =
(α0 mod q, β0 mod q); κ0 + a · κ1 mod q = h mod q; and for j ∈ [` − 1], 〈κ0, b

M
j 〉 = v0,j , and

〈κ1, b
M
j 〉 = v1,j . Let us denote Bm the matrix associated to m built as per Lemma 4.8, and

its rows bm1 , . . . , b
m
` . Since M = m it holds that BM = Bm.

Let (κ∗0,κ
∗
1) denote an arbitrary pair of vectors satisfying the same equations as (κ0,κ1),

i.e. those fixed by the aforementioned events. Then κ∗0 + aκ∗1 = h mod q; 〈κ∗0, bmj 〉 = v0,j and
〈κ∗1; bmj 〉 = v1,j for j ∈ [`− 1]. Since for j ∈ [`− 1], bmj ∈m⊥, given the fixed information, the
joint distribution of vectors (κ0,κ1) ∈ (Z/qZ)2 is:

{(κ∗0 − a · µ ·m mod q,κ∗1 + µ ·m mod q) | µ←↩ Z/qZ}

The conditional distribution of β〈κ1, b
M
` 〉 is thus:

{β(〈κ∗1, bm` 〉+ µ〈m, bm` 〉) mod q | µ←↩ Z/qZ}

which is exactly U(Z/qZ) since by construction, bm` /∈ m⊥, so 〈m, bm` 〉 6= 0 mod q, and
β ∈ (Z/qZ)∗. Thus U = V and Hddh is 0-vector-smooth.

Running Example 2 – Hhsm-cl is vector-smooth

Lemma 4.13 states sufficient conditions for Hhsm-cl to be vector smooth. We note that this
lemma (and its proof) reflect the main ideas of the proof of ind-fe-cpa-security for our HSM-
CL based IPFE, computing inner products in Z, which we presented in [CLT18a, Thm. 7].

Lemma 4.13. If the hashkg algorithm of Hhsm-cl samples hashing keys from the Gaussian
distribution DZ,σ for σ > s̃q3/2

√
| log2(δvs)|, then Hhsm-cl is δvs-vector-smooth over G on F .

Proof. Let hk denote a random variable following the distribution DZ`,σ. Consider a random
variable M taking values in ∆M and the associated matrix BM ∈ Z`×`. For X ←↩ G\Gq, there
exist unique α ∈ Z/sZ and β ∈ (Z/qZ)∗ s.t. X = gαq f

β. As noted in Lemma 4.11, we need to
evaluate the statistical distance between:

U =
{
M, gαq f

β, p̂rojkg(hk), {〈hk, bMi 〉}i∈[`−1], f
γ | γ ←↩ U(Z/qZ)

}
and V =

{
M, gαq f

β, p̂rojkg(hk), {〈hk, bMi 〉}i∈[`−1], f
β〈hk,bM` 〉

}
.

Consider m ∈ ∆M, α0 ∈ Z/sZ, β0 ∈ Z/qZ, ĥp ∈ (Z/$Z)`, and v ∈ Z`−1. It suffices
to study the distance between the random variables Y := β〈hk, bM` 〉 mod q and γ mod q
conditioned on the conjunction of the following events: M = m; α mod s = α0 mod s;
β mod q = β0 mod q; hk mod $ = ĥp mod $ and for j ∈ [` − 1], 〈hk, bMj 〉 = vj . Let us
denote Bm the matrix associated to m built as per Lemma 4.8, and its rows bm1 , . . . , b

m
` .

Since M = m it holds that BM = Bm. In the following, we evaluate the distribution fol-
lowed by hk in Z, conditioned on these events. To this end, let hk0 denote an arbitrary vector
satisfying the same equations as hk, i.e. for j ∈ [`− 1],

〈hk0, bmj 〉 = vj in Z and hk0 mod $ = ĥp mod $.

116

CHAPTER 4. FUNCTIONAL ENCRYPTION FOR COMPUTING INNER PRODUCTS

We define Λ := {t ∈ Z` | 〈t, bmi 〉 = 0 for i ∈ [`− 1]; t = 0 mod $} ⊂ Z`. Since hk is
sampled from DZ`,σ, given the fixed information, hk is of the form hk0 + T where T is a
random variable with values in Λ. The variable T follows the same probability distribution as
hk− hk0 but taken over Λ, i.e. ∀t ∈ Λ:

Pr[T = t] =
DZ`,σ,−hk0(t)
DZ`,σ,−hk0(Λ)

=
ρσ,−hk0(t)
ρσ,−hk0(Z`)

· ρσ,−hk0(Z
`)

ρσ,−hk0(Λ)
= DΛ,σ,−hk0(t).

So the conditional distribution followed by hk ∈ Z` is

hk0 + DΛ,σ,−hk0 .

Now denoting d 6= 0 the gcd of the coefficients of bm` and b̃ = 1/d · bm` ∈ Z`, since bm` = m
(cf. Definition 4.7), it holds that all vectors {bmj }j∈[`−1] belong to b̃⊥. Moreover, from the
norm bonds on vectors in M, it holds that d 6= 0 mod q. We consider the 1-dimensional lattice
Λ′ := {t ∈ Z`|〈t, bmi 〉 = 0 for i ∈ [` − 1]} which contains b̃ · Z. In fact as gcd(b̃1, . . . , b̃`) = 1,
one has Λ′ = b̃ ·Z (∃y ∈ Z` s.t. Λ′ = y ·Z, and b̃ = αy, so α must divide gcd(b̃1, . . . , b̃`) = 1).
Moreover, for µ ∈ Z, in order for $ to divide each µb̃i, $ must divide µ, so

Λ = Λ′ ∩$ · Z` = (b̃ · Z ∩$ · Z`) = $ · b̃ · Z,

We now consider the distribution of 〈hk, b̃〉, and then reduce it mod q, so as to prove that the
random variable Ỹ := 〈hk, b̃〉 mod q follows a distribution close to U(Z/qZ). Let us denote
Λ0 := $ · ||b̃||22 · Z. It follows from Lemma 2.19 that the distribution of 〈hk, b̃〉 is:

〈hk0, b̃〉+ DΛ0,||̃b||2·σ,−c where c := 〈hk0, b̃〉 in Z.

In order to prove that the above distribution, taken mod q, is statistically close to U(Z/qZ), we
consider the distribution obtained by reducing the distribution DΛ0,||̃b||2·σ,−c over Λ0 modulo
the sub-lattice Λ′0 := qΛ0. Since $ and q are co-prime, it holds that Λ0/Λ′0 ' Z/qZ, and
so demonstrating that 〈hk, b̃〉 mod q follows a distribution statistically close to U(Λ0/Λ′0) will
allow us to conclude. From Lemma 2.21 it follows that to achieve the required smoothing
parameter ηε(Λ′0) one must impose a lower bound on the standard deviation σ, i.e. ||b̃||2 · σ >
ηε(Λ′0). From [MR07] we know that, for 0 < ε < 1/2, and setting δvs := 2ε, it holds that:

ηε(Λ′0) 6

√
ln(2(1 + 1/ε))

π
· λ1(Λ′0) <

√
| log2(δvs)|

2
· λ1(Λ′0)

Since λ1(Λ′0) = q ·$ ·||b̃||22 < q ·$ ·||b̃||22, we require σ > q ·$ ·||b̃||2
√

2−1| log2(δvs)|. Moreover, as
||b̃||2 <

√
2q (due to the norm bounds on vectors in M, one has ||b̃||∞ < 2

√
q/(2`)), choosing

σ > s̃ · q3/2
√
| log2(δvs)| suffices to ensure that the distribution of 〈hk, b̃〉 mod q is δvs-close to

the uniform distribution over Λ0/Λ′0 ' Z/qZ.
Finally Y = β · 〈hk, bm` 〉 mod q = β · d · 〈hk, b̃〉 mod q where 〈hk, b̃〉 mod q is δvs-close to

U(Z/qZ), β 6= 0 mod q and d 6= 0 mod q. This implies that Y also follows a distribution δvs-
close to U(Z/qZ). Thus the statistical distance between the last coordinates of U and V, given
the first four, is at most δvs, which concludes the proof.

Running Example 3 – Hddh-f is vector-smooth

Lemma 4.14 states sufficient conditions for Hddh-f to be vector smooth. We note that this
lemma (and its proof) reflect the main ideas of the proof of ind-fe-cpa-security for our DDH-f
based IPFE, computing inner products in Z, which we presented in [CLT18b, Thm. 5].

117

CHAPTER 4. FUNCTIONAL ENCRYPTION FOR COMPUTING INNER PRODUCTS

Lemma 4.14. If the hashkg algorithm of Hddh-f samples hashing keys from the Gaussian
distribution DZ,σ for σ > s̃q3/2

√
| log2(δvs)|, then Hddh-f is δvs-vector-smooth over G on F .

Proof. For i ∈ [`], let hki := (κ0,i, κ1,i) denote independent random variables following the
distribution DZ2,σ; let κ0 := (κ0,1, . . . , κ0,`)T , κ1 := (κ1,1, . . . , κ1,`)T , and hk := (hk1, . . . , hk`)T .
Consider a random variable M taking values in ∆M and the associated matrix BM ∈ Z`×`.

From the decomposability of Hddh-f , for X ←↩ X\L there exist unique a ∈ Z/sZ and
β ∈ (Z/qZ)∗ satisfying X = (ga, hafβ). As noted in Lemma 4.11, we need to evaluate the
statistical distance between:

U =
{
M,X, ((κ0,κ1) mod $,κ0 + ακ1 mod q), {〈κ0, b

M
j 〉, 〈κ1, b

M
j 〉}j∈[`−1], f

γ | γ ←↩ U(Z/qZ)
}

and V =
{
M,X, ((κ0,κ1) mod $,κ0 + ακ1 mod q), {〈κ0, b

M
j 〉, 〈κ1, b

M
j 〉}j∈[`−1], f

β〈κ1,bM` 〉
}
.

Consider m ∈ ∆M, ā ∈ Z/sZ, β̄ ∈ Z/qZ, κ̄0, κ̄1 ∈ (Z/$Z)`, κ̄2 ∈ (Z/qZ)`, and v0,v1 ∈
Z`. It suffices to study the distance between the random variables Y := β〈κ1, b

M
` 〉 mod q and

γ mod q conditioned on the conjunction of the following events: M = m; a mod s = ā mod s;
β mod q = β̄ mod q; (κ̄0, κ̄1) = (κ0,κ1) mod $; κ̄2 = κ0 + ακ1 mod q and for j ∈ [` − 1],
〈κ0, b

M
j 〉 = v0,j and 〈κ1, b

M
j 〉 = v1,j . Let us denote Bm the matrix associated to m built

as per Lemma 4.8, and its rows bm1 , . . . , b
m
` . Since M = m it holds that BM = Bm. In

the following, we evaluate the distribution followed by hk conditioned on these events. To
this end, let (κ∗0,κ

∗
1) denote an arbitrary pair of vectors satisfying the same equations as

(κ0,κ1), i.e. κ∗0 = κ̄0 mod $; κ∗1 = κ̄1 mod $; κ∗0 + ακ∗1 = κ̄2 mod q; and for j ∈ [` − 1],
〈κ∗0, bmj 〉 = v0,j , 〈κ∗1, bmj 〉 = v1,j .

Consider the lattice Λ := {t ∈ Z`|〈t, bmj 〉 = 0 for j ∈ [`− 1]; t = 0 mod $} ⊂ Z`. Since κ0

and κ1 are sampled from DZ`,σ, using similar arguments to those in proof of Lemma 4.13, one
gets that the conditional joint distribution of (κ0, κ1) ∈ Z` is

{(κ∗0 − α · µ,κ∗1 + µ) | µ←↩ DΛ,σ,−κ∗1}

Clearly the value of κ1 fixes that of κ0, so let us focus on the distribution of κ1. Denoting d 6= 0
the gcd of the coefficients of bm` and b̃ = 1/d · bm` ∈ Z`, since bm` = m (cf. Definition 4.7), it
holds that all vectors {bmj }j∈[`−1] belong to b̃⊥.

We consider the distribution of 〈κ1, b̃〉, and then reduce it mod q, so as to prove that the ran-
dom variable 〈κ1, b̃〉 mod q follows a distribution close to U(Z/qZ). Following the exact same
reasoning as in proof of Lemma 4.13, one demonstrates that choosing σ > s̃q3/2

√
| log2(δvs)| en-

sures the distribution followed by the random variable 〈κ1, b
m
` 〉 mod q is δvs-close to U(Z/qZ).

Finally Y = β · d · 〈κ1, b̃〉 mod q where β 6= 0 mod q and d 6= 0 mod q, consequently Y also
follows a distribution δvs-close to U(Z/qZ). Thus U and V are δvs-close, which concludes the
proof.

4.2.4 Integrity

So as to guarantee security against active adversaries, who attempt to glean information by
tampering with ciphertexts before requesting their decryption, we generalise the definition of
a universal2 PHF from [CS02]. To this end we define a new property on PHFs, called vector
universality, which ensures ciphertext integrity in our upcoming constructions. The original
definition of a universal2 PHF of [CS02] allows to enforce ciphertext integrity for PKE schemes;
in the context of IPFE, one also needs to deal with key derivation queries performed by the
adversary. The definition of vector-universality, and proofs that our running examples possess
it (Lemmas 4.16 to 4.18) are key to our achievements regarding IPFE schemes secure against
active adversaries.

118

CHAPTER 4. FUNCTIONAL ENCRYPTION FOR COMPUTING INNER PRODUCTS

Intuition. As the definition is quite technical, we first give a little intuition. The high level
idea is that we want the decryption algorithm to reject any ciphertext which, if decrypted,
could leak harmful information. Just as in the context of PKE (cf. Section 3.4.2), these harm-
ful ciphertexts, dubbed invalid ciphertexts, are exactly those whose first component lives in
X̂\L̂. Hence, denoting this first ciphertext component x, one needs to ensure the decryption
algorithm never decrypts a ciphertext with x /∈ L̂. To this end, upon encryption of a message
vector of length `, one computes ` evaluations of an extended projective hash function ehash
over x, using independently sampled hashing keys ehk1, . . . , ehk`. The resulting ciphertext
contains x, the masked message components, and all the evaluations of ehash.

In our ind-fe-cca-secure IPFE schemes a decryption key for k ∈ K contains the linear
combination skk :=

∑`
i=1 kiehki. Using the key homomorphic property of the EPHF, a cipher-

text will only be decrypted if ehash(skk, x) yields the expected combination of the received
ciphertext components.

Now if the ciphertext is invalid, i.e. if x /∈ L̂, it must be infeasible for an adversary to
compute a ciphertext which will not be rejected, even given all the auxiliary information it
gets from the scheme’s public values and from its key derivation queries.

If the inequality of Definition 4.15 holds, one ensures that conditioned on the publicly
available information (i.e. êprojkg(ehk) = êhp); the adaptively chosen difference between chal-
lenge messages (i.e. M = m); the evaluation of ehash given by the challenge ciphertext (i.e.
ehash(ehk, x∗, e∗) = π∗); and all the information available on ehk from key derivation queries
(i.e. the evaluations of bT · ehk for any b satisfying 〈b,m0〉 = 〈b,m1〉), no adversary can
predict an extended hash value π over an element x /∈ L̂ which would authorise decryption.

Definition 4.15 (δvu-vector-universal). Let ` and a be positive integers. Let R be a ring,
either Z or Z/qZ for some prime q; SM := (X̂,X, L̂,W,R) be an SMP, and eH := (ehashkg,
êprojkg, eprojkg, ehash, ̂eprojhash, eprojhash) be the associated EPHF, which we assume to be
(R, 2a, f, nf , `,M,K)-ipfe-compatible. For i ∈ [`], let ehki ← ehashkg(SM), and denote ehk :=
(ehk1, . . . , ehk`)T . Consider a random variable M taking values in ∆M and the associated
matrix BM ∈ R`×`. We say eH is δvu(`)-vector-universal if for any êhp ∈ (K

êhp
)`; any m ∈

∆M; any k ∈ K s.t. k /∈m⊥; any (x∗, e∗) ∈ X̂ × E, (x, e) ∈ X̂\L̂ × E, s.t. (x, e) 6= (x∗, e∗),
and for any (v1, . . . ,v`−1) ∈ (Kehk)`−1; π∗ ∈ Π` and π ∈ Π it holds that:

Pr
[
ehash(kT · ehk, x, e) = π

∣∣ ehash(ehk, x∗, e∗) = π∗ ∧ êprojkg(ehk) = êhp

∧ ((bMj)T · ehk = vj for j ∈ [`− 1]) ∧M = m
]
6 δvu(`).

Remark. Similarly to Lemma 4.11 let us assume H is further homomorphic, key homomorphic
and (Υ̂,Υ, F)-decomposable. Then using the same notations as in Definition 4.15, from the
decomposability of eH we know there exist unique z, z∗ ∈ L̂ and y, y∗ ∈ 〈Υ〉, y 6= 1, such
that x = z · y and x∗ = z∗ · y∗. Since the output of êprojkg(ehk) fixes that of ehash(ehk, z)
and that of ehash(ehk, z∗), and since eH is homomorphic, eH is δvu(`)-vector-universal if for all
êhp ∈ (K

êhp
)`; any k ∈ K s.t. k /∈m⊥; and for any (v1, . . . ,v`−1) ∈ (Kehk)`−1; π∗F ∈ F ` and

πF ∈ F it holds that:

Pr
[
ehash(kT · ehk, z, e) = π

∣∣ ehash(ehk, z∗, e∗) = π∗F ∧ êprojkg(ehk) = êhp

∧ ((bMj)T · ehk = vj for j ∈ [`− 1]) ∧M = m
]
6 δvu(`).

We use this formulation to prove Lemmas 4.16 to 4.18.

Furthermore, for the proofs of these Lemmas, we denote:

119

CHAPTER 4. FUNCTIONAL ENCRYPTION FOR COMPUTING INNER PRODUCTS

• E0 the event “ehash(kT · ehk, z, e) = π”;

• E1 the event “ehash(ehk, z∗, e∗) = π∗F ”;

• E2 the event “êprojkg(ehk) = êhp”;

• E3 the event “((bMj)T · ehk = vj for j ∈ [`− 1]”;

• and E4 the event “M = m”.

Running Example 1 – eHddh is vector-universal

Lemma 4.16 states sufficient conditions for Hddh to be vector universal. Recall that for SMddh
it holds that X = X̂, L̂ = L and consequently êprojkg = eprojkg and ̂eprojhash = eprojhash.

Lemma 4.16. If Γ : G3 7→ {0, . . . , q − 1} is sampled from a δcr-hard CRHF generator, then
eHddh is δvu-vector-universal, where δvu = 1/q + δcr.

Proof. For i ∈ [`] let ehki := (κ0,i, κ1,i, κ2,i, κ3,i) denote independent random variables follow-
ing the distribution U((Z/qZ)4); let ehk := (ehk1, . . . , ehk`)T and κµ := (κµ,1, . . . , κµ,`)T ∈
(Z/qZ)` for µ ∈ {0, 1, 2, 3}. Consider a random variable M taking values in ∆M and the associ-
ated matrix BM ∈ Z/qZ`×`. Consider a vectorm ∈ (Z/qZ)` and matrix Bm ∈ (Z/qZ)`×` asso-
ciated tom (Definition 4.7). Consider any ((x∗0, x

∗
1), e∗) ∈ G2×G, ((x0, x1), e) ∈ (G2\〈(g0, g1)〉)

×G, s.t. ((x0, x1), e) 6= ((x∗0, x
∗
1), e∗). By decomposability of eHddh there exist unique (z0, z1),

(z∗0 , z
∗
1) ∈ L̂ and b, b∗ ∈ Z/qZ, b 6= 0 mod q, such that (x0, x1) = (z0, z1) � (1, gb1) and

(x∗0, x
∗
1) = (z∗0 , z

∗
1)� (1, gb

∗
1). Let us denote γ∗ = Γ((x∗0, x

∗
1), e∗) and γ = Γ((x0, x1), e). We must

prove that for any ehp ∈ G2`; any m ∈ ∆M; any k ∈ K s.t. k /∈ m⊥; any vµ,j ∈ Z/qZ for
µ ∈ {0, 1, 2, 3} and j ∈ [`− 1]; any π∗ ∈ G`; and for any π ∈ G it holds that:

Pr[(gb1)〈κ1+γκ3,k〉 = π
∣∣ (gb∗1)κ1+γ

∗κ3 = π∗ ∧ (gκ00 gκ11 , gκ20 gκ31) = ehp

∧ 〈κµ, bMj 〉 = vµ,j for j ∈ [`− 1], µ ∈ {0, 1, 2, 3} ∧M = m],

Observe that if (x∗0, x
∗
1) ∈ 〈(g0, g1)〉 then b∗ = 0 mod q and E1 provides no information. We

hereafter assume this is not the case. Thus b 6= 0 mod q and b∗ 6= 0 mod q are both invertible
mod q. We consider the information on ehk fixed by the conjunction of E1, E2, E3 and E4. As
we shall see, given this information, the probability E0 occurs is upper bounded by δvu.

1. For some h ∈ (Z/qZ)`, event E1 can equivalently be stated as: h = κ1 + γ∗κ3 mod q.

2. For some k0 and k1 in (Z/qZ)`, E2 can equivalently be stated as:{
k0 = κ0 + aκ1 mod q
k1 = κ2 + aκ3 mod q.

Conditioned on E1 and E2, the joint distribution of (κ0,κ1,κ2,κ3) is thus:

{(k0 − ah+ aγ∗µ,h− γ∗µ,k1 − aµ,µ) | µ←↩ (Z/qZ)`}. (4.1)

3. The conjunction of E3 and E4 sets: 〈κµ, bmj 〉 = vµ,j for j ∈ [`− 1], µ ∈ {0, 1, 2, 3}.

120

CHAPTER 4. FUNCTIONAL ENCRYPTION FOR COMPUTING INNER PRODUCTS

We now evaluate the conditional distribution followed by (〈κ0,k〉, 〈κ1,k〉, 〈κ2,k〉, 〈κ3,k〉),
conditioned on the conjunction of E1, E2, E3 and E4 Let (κ∗0,κ

∗
1,κ
∗
2,κ
∗
3) denote an arbitrary

quadruple of vectors satisfying the same equations as (κ0,κ1,κ2, κ3), i.e. those fixed by
E1, E2, E3, E4. Then

κ∗0 = k0 − ah+ aγ∗κ∗3 mod q
κ∗1 = h− γ∗κ∗3 mod q
κ∗2 = k1 − aκ∗3 mod q
〈κ∗µ, bmj 〉 = vµ,j for j ∈ [`− 1], µ ∈ {0, 1, 2, 3}.

Since for j ∈ [`− 1], bmj ∈m⊥, the conditional joint distribution of (κ0,κ1,κ2, κ3) is:

{(κ∗0 + γ∗ · a · µ ·m,κ∗1 − γ∗ · µ ·m,κ∗2 − a · µ ·m,κ∗3 + µ ·m) | µ←↩ Z/qZ}.

The conditional distribution of 〈κ3,k〉 is thus:

{〈κ∗3,k〉+ µ〈m,k〉 | µ←↩ Z/qZ},

which is exactly U(Z/qZ) since by definition k /∈m⊥, so 〈m,k〉 6= 0 mod q.

Probability E0 occurs. This is the probability p that the random variable X1 := 〈κ1 +
γκ3,k〉 mod q takes a fixed value mod q. From Eq. (4.1) we can write:

X1 = 〈h+ (γ − γ∗)κ3,k〉.

Where 〈h,k〉 is fixed by E1 and the value of k. Thus if γ 6= γ∗ mod q then X1 follows the
uniform distribution modulo q and so the conditional probability E0 occurs is 1/q. Now since
γ∗ = Γ((x∗0, x

∗
1), e∗) and γ = Γ((x0, x1), e), the event γ = γ∗ mod q occurs with probability

6 δcr. We can conclude that p 6 1/q + δcr, and denoting δvu := 1/q + δcr, it holds that Hddh is
δvu-vector-universal.

Running Example 2 – eHhsm-cl is vector-universal

Recall that, for ` ∈ N, denoting M = K = {x ∈ Z` : ||x||∞ <
√

q
2`}, Hhsm-cl is

(Z, 1, f, q, `,M,K)-ipfe-compatible. Lemma 4.17 states sufficient conditions for Hhsm-cl to be
vector universal.

Lemma 4.17. If the ehashkg algorithm of eHhsm-cl samples hashing keys from the Gaussian
distribution D̂ = DZ,σ for σ >

√
| log2(δ)|s̃q, and Γ : Ĝ2 7→ {0, . . . , q − 1} is sampled from a

δcr-hard CRHF generator, then eHhsm-cl is δvu-vector-universal, where δvu := 1/q + δcr + δ1/q.

Proof. For i ∈ [`], β ∈ {0, 1}, let hkβ,i denote independent random variables sampled from
DZ,σ; let hkβ := (hkβ,1, . . . , hkβ,`) ∈ Z`. Let M be a random variable taking values in ∆M and
BM ∈ Z`×` be the associated matrix.

Consider any (x∗, e∗) ∈ Ĝ2, (x, e) ∈ Ĝ\Ĝq × Ĝ, s.t. (x, e) 6= (x∗, e∗). By decomposability
of eHhsm-cl there exist unique z, z∗ ∈ Ĝq and b, b∗ ∈ Z/qZ, b 6= 0 mod q, such that x = zf b

and x∗ = zf b
∗
. Let us denote γ∗ = Γ(x∗, e∗) and γ = Γ(x, e). We must prove that for any

êhp ∈ (Z/$Z)2`; any m ∈ ∆M (we denote bm1 , . . . , b
m
` ∈ Z` be the rows of the matrix Bm

associated to m built as per Lemma 4.8); any k ∈ K s.t. k /∈m⊥; any vβ,j ∈ Z for β ∈ {0, 1}
and j ∈ [`− 1]; any π∗ ∈ F `; and any π ∈ F it holds that:

Pr[(f b)〈hk0+γhk1,k〉 = π
∣∣ (f b∗)hk0+γ∗hk1 = π∗ ∧ êprojkg(hk0,hk1) = êhp

121

CHAPTER 4. FUNCTIONAL ENCRYPTION FOR COMPUTING INNER PRODUCTS

∧ 〈hkβ, bMj 〉 = vβ,j for j ∈ [`− 1], β ∈ {0, 1} ∧M = m] 6 δvu.

Observe that if x∗ ∈ Ĝq then b∗ = 0 mod q and E1 provides no information. We hereafter
assume this is not the case. Thus b 6= 0 mod q and b∗ 6= 0 mod q are both invertible mod q.
We consider the information on ehk fixed by the conjunction of E1, E2, E3 and E4.

1. For some h ∈ (Z/qZ)`, event E1 can equivalently be stated as: h = hk0 + γ∗hk1 mod q.
So conditioned on E1, the joint distribution of (hk0 mod q,hk1 mod q) is:

{(h− γ∗hk1 mod q,hk1 mod q) | hk1 ←↩ DZ`,σ}.

2. For êhp0 and êhp1 ∈ (Z/$Z)` satisfying êhp = (êhp0, êhp1), event E2 can equivalently
be stated as: êhp0 mod $ = hk0 mod $ and êhp1 mod $ = hk1 mod $.

3. Event E4 tells us that BM = Bm. Note that bm` = m since R = Z. The conjunction of
events E3 and E4 can equivalently be stated as: 〈hkβ, bmj 〉 = vβ,j for j ∈ [`−1], β ∈ {0, 1}.

We first evaluate the distribution followed by hk1 conditioned on these events. To this end, let
hk∗1 ∈ Z` denote an arbitrary vector satisfying the same equations as hk1, i.e. for j ∈ [`− 1],

〈hk∗1, bmj 〉 = 〈hk1, bmj 〉 = vβ,j and hk∗1 mod $ = êhp1 mod $.

We define Λ := {t ∈ Z` | 〈t, bmj 〉 = 0 for j ∈ [` − 1]; t = 0 mod $} ⊂ Z`, such that, as in
proof of Lemma 4.13, given the information fixed by E2 and E3, the distribution followed by
hk1 ∈ Z` is:

hk∗1 + DΛ,σ,−hk∗1 .

Denoting d 6= 0 the gcd of the coefficients of bm` and b̃ = 1/d · bm` ∈ Z`, since bm` = m
(cf. Definition 4.7), it holds that all vectors {bmi }i∈[`−1] belong to b̃⊥. Now consider the 1-
dimensional lattice Λ′ := {t ∈ Z`|〈t, bmj 〉 = 0 for j ∈ [` − 1]} which contains b̃Z. In fact as
gcd(b̃1, . . . , b̃`) = 1, one has Λ′ = b̃ ·Z, and also Λ = Λ′∩$ ·Z` = (b̃ ·Z∩$ ·Z`) = $ · b̃ ·Z (cf.
detailed explanation in proof of Lemma 4.13). We now consider the distribution followed by
〈hk1, b̃〉, and then reduce it mod q, so as to prove that the random variable Ỹ := 〈hk1, b̃〉 mod q
follows a distribution close to U(Z/qZ). Let us denote Λ0 := $ · ||b̃||22 · Z. It follows from
Lemma 2.19 that the distribution followed by 〈hk1, b̃〉 is:

〈hk∗1, b̃〉+ DΛ0,||̃b||2·σ,−c where c = 〈hk∗1, b̃〉 in Z.

As in proof of Lemma 4.13, we reduce the distribution DΛ0,||̃b||2·σ,−c over Λ0 modulo the

sublattice Λ′0 := qΛ0. Since σ >
√
| log2(δ)|·s̃·q =

√
| log2(δ

1
q)|·s̃·q3/2 it holds that 〈hk1, b̃〉 mod

q is δ
1
q -close to the uniform distribution over Λ0/Λ′0 ' Z/qZ. Using the information fixed by

E1, the distribution of 〈hk0 + γhk1, b̃〉 mod q is thus

{〈h, b̃〉+ (γ − γ∗)(〈hk∗1, b̃〉+ ν) mod q| ν ←↩ (DΛ0,||̃b||2σ,−c mod Λ′0)} (4.2)

Since (DΛ0,||̃b||2σ,−c mod Λ′0) is δ
1
q -close to U(Z/qZ), and h is fixed by E1, if γ 6= γ∗ mod q

then 〈hk0 + γhk1, b̃〉 mod q follows a distribution δ
1
q -close to U(Z/qZ).

122

CHAPTER 4. FUNCTIONAL ENCRYPTION FOR COMPUTING INNER PRODUCTS

Probability E0 occurs. This is the probability that the random variable X1 := 〈hk0 +
γhk1,k〉 mod q takes a fixed value. Since the matrix Bm is invertible mod q, k mod q can be
uniquely expressed as a linear combination of the rows of Bm. We denote this decomposition

k =
∑
i∈[`]

αib
m
i mod q with α` ∈ (Z/qZ)∗ and αi ∈ Z/qZ for i ∈ [`− 1].

From the knowledge of k and E3, for i ∈ [`−1] the values 〈hk0 +γhk1, αibmi 〉 are fixed. And so
we need only consider the probability that α`〈hk0 + γhk1, bm` 〉 = d · α`〈hk0 + γhk1, b̃〉 takes a
fixed value mod q. But from Eq. (4.2) we know that, if γ 6= γ∗ mod q then 〈hk0+γhk1, b̃〉 mod q

follows a distribution δ
1
q -close to U(Z/qZ). Note that, since γ∗ = Γ(x∗, e∗) and γ = Γ(x, e),

the event γ = γ∗ occurs with probability 6 δcr. It follows that the probability 〈hk0 + γhk1, b̃〉
takes a given value mod q is 6 1/q + δ

1
q + δcr, which concludes the proof.

Running Example 3 – eHddh-f is vector-universal

Recall that for ` ∈ N, denoting M = K = {x ∈ Z` : ||x||∞ <
√

q
2`}, Hddh-f is (Z, 2, f, q, `,M,

K)-ipfe-compatible. Lemma 4.18 states sufficient conditions for Hddh-f to be vector universal.

Lemma 4.18. If the ehashkg algorithm of eHddh-f samples hashing keys from the Gaussian
distribution D̂ = DZ,σ for σ >

√
| log2(δ)|s̃q, and Γ : Ĝ2 7→ {0, . . . , q − 1} is sampled from a

δcr-hard CRHF generator, then eHddh-f is δvu-vector-universal, where δvu := 1/q + δcr + δ1/q.

Proof. For i ∈ [`] let ehki := (κ0,i, κ1,i, κ2,i, κ3,i) denote independent random variables following
the distribution DZ4,σ; let ehk := (ehk1, . . . , ehk`)T and κµ := (κµ,1, . . . , κµ,`)T ∈ Z` for
µ ∈ {0, 1, 2, 3}. Let M be a random variable taking values in ∆M and BM ∈ Z`×` be the
associated matrix.

Recall that we denote α := logg(h), and that L̂ = {(u0f
r, u1f

αr|u0, u1 ∈ Ĝq; r ∈ Z/qZ}.
Consider any (x∗0, x

∗
1) ∈ Ĝ2, (x0, x1) ∈ Ĝ2\L̂ and e, e∗ ∈ Ĝ, satisfying ((x0, x1), e) 6= ((x∗0, x

∗
1),

e∗); from the decomposability of eHddh-f we know there exist unique (z0, z1), (z∗0 , z
∗
1) ∈ L̂ and

b, b∗ ∈ Z/qZ, b 6= 0 mod q, such that (x0, x1) = (z0, z1) � (1, f b) and (x∗0, x
∗
1) = (z∗0 , z

∗
1) �

(1, f b
∗
). Let us denote γ∗ = Γ((x∗0, x

∗
1), e∗) and γ = Γ((x0, x1), e). We must prove that for any

((κ̄0, κ̄1, κ̄2, κ̄3), (k0,k1)) ∈ (Z/$Z)4 × (Z/qZ)2; any m ∈ ∆M (we denote bm1 , . . . , b
m
` ∈ Z`

be the rows of the matrix Bm associated to m built as per Lemma 4.8); any k ∈ K s.t.
k /∈m⊥; any vµ,j ∈ Z/qZ for µ ∈ {0, 1, 2, 3} and j ∈ [`− 1]; any π∗F ∈ F `; and any πF ∈ F it
holds that:

Pr[f b〈κ1+γκ3,k〉 = πF
∣∣ f b∗(κ1+γ∗κ3) = π∗F

∧ ((κ̄0, κ̄1, κ̄2, κ̄3), (k0,k1)) = ((κ0,κ1,κ2,κ3) mod $, (κ0 + ακ1,κ2 + ακ3) mod q)

∧ 〈κµ, bj〉 = vµ,j for j ∈ [`− 1], µ ∈ {0, 1, 2, 3} ∧M = m] 6 δvu. (4.3)

Observe that if (x∗0, x
∗
1) ∈ L̂, then b∗ = 0 mod q, and E1 provides no information. We assume

this is not the case, and so b and b∗ are invertible mod q. We now demonstrate that given
the distribution followed by ehk conditioned on the conjunction of E1, E2, E3 and E4, the
probability E0 occurs is bound by δvu. Let us first reformulate the information provided by
these events for clarity.

1. For some h ∈ (Z/qZ)`, event E1 can equivalently be stated as: h = b∗(κ1 +γ∗κ3) mod q.

2. The event E2 fixes (κ0,κ1,κ2,κ3) mod $, we hereafter focus on their distribution mod
q. Conditioning on E2 also tells us that: k0 = κ0 +ακ1 mod q and k1 = κ2 +ακ3 mod q.

123

CHAPTER 4. FUNCTIONAL ENCRYPTION FOR COMPUTING INNER PRODUCTS

3. Event E4 tells us that BM = Bm. Note that bm` = m since R = Z. The conjunction of
events E3 and E4 can equivalently be stated as:

〈κµ, bmj 〉 = vµ,j for j ∈ [`− 1], µ ∈ {0, 1, 2, 3}.

Let (κ∗0,κ
∗
1,κ
∗
2,κ
∗
3) ∈ (Z`)4 denote an arbitrary tuple of vectors satisfying the same equations

as (κ0,κ1,κ2,κ3). Then, denoting Λ := {t ∈ Z`|〈t, bmj 〉 = 0 for j ∈ [`−1]; t = 0 mod $} ⊂ Z`,
the conditional joint distribution of (κ0,κ1,κ2,κ3) mod q is

{κ∗0 + γ∗ · α · µ,κ∗1 − γ∗µ,κ∗2 − αµ,κ∗3 + µ | µ←↩ DΛ,σ,−κ∗1}.

We now focus on the distribution of κ3 mod q, as it fixes κ0,κ1,κ2 mod q. Denoting d 6= 0 the
gcd of the coefficients of bm` and b̃ = 1/d · bm` ∈ Z`, since bm` = m (cf. Definition 4.7), it holds
that all vectors {bmj }j∈[`−1] belong to b̃⊥. Using similar techniques to proofs of Lemmas 4.14
and 4.17, one gets that, since κ0,κ1,κ2,κ3 were sampled from DZ`,σ, for σ >

√
| log2(δ)|s̃q,

the conditional distribution followed by 〈κ3, b̃〉 mod q is δ
1
q -close to U(Z/qZ).

Probability that E0 occurs. This is the probability p that the random variable X1 :=
〈κ1 + γκ3,k〉 mod q takes a fixed value. As in proof of Lemma 4.17, k mod q can be uniquely
expressed as

k =
∑
i∈[`]

αib
m
i mod q with α` ∈ (Z/qZ)∗ and αi ∈ Z/qZ for i ∈ [`− 1],

where the values 〈κ1+γκ3, αib
m
i 〉 are fixed, so we need only consider the conditional probability

that α`〈κ1 + γκ3, b
m
` 〉 = d · α`〈κ1 + γκ3, b̃〉 takes a fixed value mod q. We denote X ′1 :=

d · α`〈κ1 + γκ3, b̃〉 mod q this random variable. Since b∗ 6= 0 mod q, given E1 we can write:

X ′1 = d · α`〈(b∗)−1h+ κ3(γ − γ∗), b̃〉 mod q

where d · α`〈(b∗)−1h, b̃〉 mod q is fixed by E1 and the value of k. Moreover since d 6= 0 mod q

and α` 6= 0 mod q, if γ 6= γ∗ mod q then X ′1 follows a distribution δ
1
q -close to U(Z/qZ) and

so the conditional probability E0 occurs is 6 δ
1
q + 1/q. Now since γ∗ = Γ((x∗0, x

∗
1), e∗) and

γ = Γ((x0, x1), e), the event γ = γ∗ mod q occurs with probability 6 δcr. We can conclude

that p 6 1/q + δ
1
q + δcr, and denoting δvu := 1/q + δ

1
q + δcr, it holds that Hddh-f is δvu-vector-

universal.

4.2.5 Inner Product Safe PHFs

We define the notions of active and passive inner product safe projective hash functions
(aip-safe and pip-safe), which summarise the properties required to build ind-fe-cca and
ind-fe-cpa secure IPFE schemes.

Definition 4.19 (pip-safe). Let ` and a be positive integers. Let R be either the ring Z or Z/qZ
for some prime q; GenSM be an SMP generator outputting an instance SM := (X̂,X, L̂,W,R);
and let H be the associated PHF, which we assume to be (R, a, f, nf , `,M,K)-ipfe-compatible.
Then H is (R, a, f, nf , `,M,K, Υ̂, Υ, δL, δvs)-passive inner product safe (pip-safe) if, denoting
F := 〈f〉, it holds that:

• the order nf of F is either prime or hard to factor;

• H is (Υ̂,Υ, F)-decomposable, Υ̂ ∈ X̂, Υ ∈X;

124

CHAPTER 4. FUNCTIONAL ENCRYPTION FOR COMPUTING INNER PRODUCTS

• H is homomorphic;

• SM is δL-hard;

• and H is δvs-vector-smooth over X on F .

Definition 4.20 (aip-safe). Let ` and a be positive integers. Let R be either the ring Z or
Z/qZ for some prime q; GenSM be a subgroup membership problem generator outputting an
instance SM := (X̂,X, L̂,W,R); and let H be the associated PHF, which we assume to be
(R, a, f, nf , `,M,K)-ipfe-compatible. Let eH be the EPHF obtained from H via the generic con-
struction detailed in Section 3.4.3. The pair (H, eH) is said to be (R, a, f, nf , `,M,K, Υ̂,Υ, δL,
δvs, δvu)-active inner product safe (aip-safe) if H is (R, a, f, nf , `,M,K, Υ̂,Υ, δL, δvs)-pip-safe
and eH is δvu-vector-universal.

4.3 IPFE Secure against Passive Adversaries from PHFs

4.3.1 Generic Construction

We here provide an ind-fe-cpa-secure IPFE construction, and tight security reduction. Let R

be either the ring Z or Z/qZ for some prime q; GenSM be a subgroup membership problem
generator outputting an instance SM := (X̂,X, L̂,W,R) ; ` and a be positive integers;
M ⊆ R` be the plaintext space; and K ⊆ R` be the space from which keys are derived.
The scheme recovers 〈m,k〉 ∈ R for m ∈ M, k ∈ K. For security, the PHF associated to
SM, denoted H, must be (R, a, f, nf , `,M,K, Υ̂,Υ, δL, δvs)-pip-safe. The resulting scheme is
depicted in Fig. 4.1.

As we shall see in the upcomming running examples, when instantiated from DDH, the
IPFE of Fig. 4.1 yields that of [ALS16] or equivalently, the ElGamal based scheme of [ABDP16];
when instantiated from HSM-CL or DDH-f it yields our FE schemes computing inner products
in Z published in [CLT18a]. Moreover, we note that though the construction appears very
similar to the ind-fe-cpa-secure construction of [BBL17], the requirements on the PHFs are
different, and our security proof significantly lowers the bound on the adversary’s advantage.
A detailed comparison is given in Appendix A.

Correctness. As Khk = Ra one has hk ∈ (R`)a, so kT ·hk ∈ Ra. Next, by key homomorphism
of H: ∏

i∈[`]

ckii =
∏
i∈[`]

(hash(hki, c0)fmi)ki = f 〈k,m〉hash(
∑
i∈[`]

kihki, c0) = f 〈k,m〉hash(skk, c0),

thus
∏
i∈[`] c

ki
i · hash(skk, c0)−1 = f 〈k,m〉 ∈ F. Since H is (R, a, f, nf , `,M,K)-ipfe-compatible,

for any k ∈ K, and m ∈ M, logf (f 〈k,m〉) = 〈k,m〉 ∈ R. Consequently, for any mpk,msk ←
Setup(1λ, 1`), k ∈ K, and m ∈ M it holds that Dec(mpk,KeyDer(msk,k),Enc(mpk,m)) out-
puts 〈k,m〉 ∈ R.

Security. In Theorem 4.21 we demonstrate the ind-fe-cpa-security of the IPFE of Fig. 4.1. The
structure of the proof resembles those of [ALS16] which are specific to precise assumptions.
We do not include our proofs of [CLT18a] in this thesis since we are able to retrieve the
same schemes and security bounds via the generic approach adopted here. Using the vector-
smoothness property of the PHF, we are able to upper bound the amount of information
adversaries can gain in an ind-fe-cpa experiment, just as, in proof of Theorem 3.20, smoothness
allowed us to upper bound the information an adversary attacking a PKE scheme can gain in
the ind-cpa experiment.

125

CHAPTER 4. FUNCTIONAL ENCRYPTION FOR COMPUTING INNER PRODUCTS

Setup(1λ, 1`):

1. SM ← GenSM(1λ)

2. For 1 6 i 6 ` :

3. Sample hki ← hashkg(SM)

4. hpi ← projkg(hki)
5. Return mpk := hp; msk := hk

Enc(mpk,m):

1. If m /∈M return ⊥
2. Sample (c0, w)← R
3. For 1 6 i 6 ` :

4. ci ← projhash(hpi, c0, w) · fmi

5. Return ct := (c0, c)

KeyDer(msk,k):

1. If k /∈ K return ⊥
2. skk ← kT · hk
3. Return (skk,k)

Dec(mpk, (skk,k), ct):

1. If ct /∈ X̂ ×Π` then return ⊥
2. M ← (

∏
i∈[`] c

ki
i) · hash(skk, c0)−1

3. If M /∈ F then return ⊥
4. Return sol = logf (M)

Figure 4.1: IPFE that is ind-fe-cpa-secure from projective hash functions

Theorem 4.21. Let ` and a be positive integers. Let R be either the ring Z or Z/qZ for some
prime q; GenSM be a subgroup membership problem generator outputting an instance SM :=
(X̂,X, L̂,W,R); and let H be the associated PHF, which we assume to be (R, a, f, nf , `,M,

K)-ipfe-compatible. If H is (R, a, f, nf , `,M,K, Υ̂,Υ, δL, δvs)-pip-safe then the IPFE scheme
FE depicted in Fig. 4.1 is ind-fe-cpa-secure, and Advind-fe-cpaFE,A 6 δL + δvs.

Proof. We proceed via a sequence of games, starting in the original ind-fe-cpa experiment, and
ending in a game in which the adversary A’s advantage is statistically close to 1/2. The game
steps are depicted in Fig. 4.2. Let Si denote the event “The output of Gamei is 1”.

Game0. This is Expind-fe-cpaFE,A , so by definition:

Advind-fe-cpaFE,A = |Pr[S0]− 1/2| .

Game1. C computes ct using the hash keys instead of the projection keys and the witness.
Though computed differently, the values of the ciphertext components remain unchanged, as
is A’s view:

Pr[S0] = Pr[S1]. (4.4)

Game2. Here C samples c0 at random from X\L instead of from L. Both games are indistin-
guishable under the δL-hardness of SM, and it holds that:

|Pr[S1]− Pr[S2]| 6 δL. (4.5)

Let us now bound A’s probability of guessing the bit β in Game2. Observe that when A

submits its’ guess β′ for β all the information A can use for its guess comes from: (1) the
public key mpk; (2) the challenge ciphertext ct; and (3) A’s key derivation queries.

Intuition. Following [ALS16]’s proof methodology, we first delimit the information leaked in
the challenge ciphertext by only considering the dimension in which both potential challenge
ciphertexts differ. To this end we project this information onto the subspace generated by

126

CHAPTER 4. FUNCTIONAL ENCRYPTION FOR COMPUTING INNER PRODUCTS

1. Sample (mpk,msk) := (hp,hk)← Setup(1λ, 1`) and β ←↩ {0, 1}

2. Send mpk to A and answer pre-challenge phase key derivation queries

3. Receive m0, m1 from A

4. Sample (x0, w)← R and let c0 := x0

5. Sample y0 ←↩ 〈Υ〉, y0 6= 1 and overwrite c0 ← x0 · y0 ∈X\L

6. For 1 6 i 6 ` :

7. ci := hash(hki, c0) · fmb,i

8. Let ct := (c0, c)

9. Send ct to A and answer post-challenge phase key derivation queries

10. Receive β′ from A

11. If (β = β′) return 1, else return 0.

Framed text highlights the evolution from Game0 to Game1.

Double framed text is only executed in Game2.

Figure 4.2: Security games for proof of Theorem 4.21.

m0−m1 (this encapsulates the information revealed on β). We then consider the distribution
of the projection of hk on the subspace generated by m0 −m1, conditionally on A’s view.
Since A cannot query decryption keys for vectors k s.t. 〈m0 −m1,k〉 6= 0, the δvs-vector-
smoothness of H ensures that projecting hk onto the subspace generated by m0−m1 induces
a distribution {hash(〈hk,m0 −m1〉, y) | y ∈ 〈Υ〉} which is δvs-close to U(F), and thus mβ is
statistically hidden in c.

Details. Consider the information leaked on β by the challenge ciphertext. The decomposability
and homomorphic properties of H allow to write the coordinates of c as:{

c0 = x0 · y0 ∈X\L, y0 6= 1

ci = fmb,i · hash(hki, x0) · hash(hki, y0) ∈ Π for i ∈ [`].

Since this decomposition of c0 is unique (by Definition 3.18), and since x0 ∈ L, information
theoretically, for i ∈ [`] the value hash(hki, x0) is fixed by the values hpi and c0. We denote

zi := fmb,i · hash(hki, y0) ∈ F for i ∈ [`].

Any information fixed on the bit β by ci is thus contained in zi, and it suffices to consider the
information which is leaked by z := (z1, . . . , z`) ∈ F `.

Now using Lemma 4.8 one can deterministically build a matrix Bm ∈ R`×` associated
to m := m1 −m0, whose rows we denote (b1, . . . , b`). By Definition 4.7 the matrix Bm is
invertible mod nf ; so since z ∈ F `, and ord(F) = nf , all the information fixed by z is contained

in the vector (
∏
i∈[`] z

b1,i
i , . . . ,

∏
i∈[`] z

b`,i
i). It thus suffices to consider the information on β given

127

CHAPTER 4. FUNCTIONAL ENCRYPTION FOR COMPUTING INNER PRODUCTS

by: ∏
i∈[`]

z
bj,i
i = f 〈mβ ,bj〉 · hash(bTj · hk, y0) for j ∈ [`].

For j ∈ [` − 1] we have bj ∈ m⊥, so the value of f 〈mβ ,bj〉 · hash(bTj · hk, y0) provides no
information on β. Let us now consider that contained in:

f 〈mβ ,b`〉 · hash(bT` · hk, y0). (4.6)

To this end we evaluate the distribution of hash(bT` · hk, y0), and so we need to consider the
information leaked on hk via key derivation queries. First observe that any queried k ∈ K

must belong to m⊥, and so is a linear combination of vectors b1, . . . , b`−1. We can thus apply
the δvs-vector-smoothness over X on F of H, which ensures that given c0, hp and bTj · hk for
j ∈ [` − 1], the distribution of hash(bT` · hk, y0) is δvs-close to U(F), and statistically hides
f 〈mβ ,b`〉 in Eq. (4.6). Consequently:

|Pr[S2]− 1/2| 6 δvs (4.7)

Combining Eqs. (4.4), (4.5) and (4.7) concludes the proof since Advind-fe-cpaFE,A 6 δL + δvs.

Running Example 1 – Instantiation from DDH

Instantiating the IPFE of Fig. 4.1 with Hddh yields the DDH based IPFE of [ALS16], and the
ElGamal based IPFE of [ABDP16]. Furthermore, we obtain the same upper Advind-fe-cpaFE,A as
they do from their proofs.

Running Example 2 – Instantiation from HSM-CL

Instantiating the IPFE of Fig. 4.1 with Hhsm-cl yields our HSM-CL based FE scheme computing
inner products in Z published in [CLT18a]. We hereafter detail this instantiation.

Setting the parameters. We use the output (s̃, g, f, gq, Ĝ, G, F,Gq) of the Gen generator of
Definition 3.1 and require that q is a µ bit prime, with µ > λ. The message and key spaces
are M = K = {x ∈ Z` : ||x||∞ <

√
q
2`}. The decryption algorithm uses a centred modulus

to recover 〈k,m〉 over Z. To guarantee the scheme’s security we sample the coordinates of
the secret key from DZ,σ, i.e. discrete Gaussian entries of standard deviation σ > s̃q3/2

√
λ,

which yields δvs = 2−λ (cf. Lemma 4.13). To sample encryption randomness (i.e. witnesses for
Hhsm-cl), it suffices to use DZ`,σ′ for σ′ > s̃

√
λ, since {grq , r ←↩ DZ`,σ′} is at distance less than

2−λ from the uniform distribution in Gq (cf. Lemma 3.3).

Construction. Fig. 4.3 depicts the generic IPFE of Fig. 4.1 instantiated with Hhsm-cl.

128

CHAPTER 4. FUNCTIONAL ENCRYPTION FOR COMPUTING INNER PRODUCTS

Setup(1λ, 1µ, 1`):

1. Sample a µ bit prime q

2. (s̃, g, f, gq, Ĝ, G, F,Gq)← Gen(1λ, q)
3. For 1 6 i 6 ` :

4. Sample hki ←↩ DZ,σ
5. Let hpi ← ghkiq

6. Return msk := hk
and mpk := (s̃, gq, f, q,hp)

KeyDer(msk,k)

1. If k /∈ K, return ⊥
2. Let skk ← 〈k,hk〉 ∈ Z

3. Return (skk,k)

Enc(mpk,m)

1. If m /∈M, return ⊥
2. Sample r ←↩ DZ,σ′ ; set c0 ← grq

3. For 1 6 i 6 ` :

4. Let ci ← fmihpri
5. Return ct := (c0, {ci}i∈[`])

Dec(mpk, (skk,k), ct)

1. If ct /∈ Ĝ`+1, return ⊥
2. Let M ← (

∏
i∈[`] c

ki
i) · (c−skk0)

3. If M /∈ F , return ⊥
4. sol← Solve(M)

5. If sol > q/2, return (sol− q)
6. Else return sol

Figure 4.3: FE scheme computing inner product in Z from the HSM-CL assumption.

Corollary 4.22 (of Theorem 4.21). If the HSM-CL problem is hard, the IPFE scheme of
Fig. 4.3 is ind-fe-cpa-secure.

Walking Example – Instantiation from DCR

Though we have not detailed the PHF which arises from the DCR assumption, one can also
build such a PHF (and in fact in the original [CS02] article, one of their instantiations was
based on DCR). Let us denote Hdcr this projective hash function. Just as the (simplified ind-cpa-
secure) encryption scheme of Camenisch Shoup [CS03], which relies on the DCR assumption,
shares many similarities with Πhsm-cl of Fig. 3.5, Hdcr shares many similarities with Hhsm-cl,
and can in fact be made to satisfy all the required properties to instantiate the IPFE of
Fig. 4.1. Furthermore, when instantiated from Hdcr, the IPFE of Fig. 4.1 yields the Paillier
based construction of [ALS16], and we obtain the same upper bound for Advind-fe-cpaFE,A as they
do from their (non generic) proof.

Running Example 3 – Instantiation from DDH-f

Instantiating the IPFE of Fig. 4.1 with Hddh-f yields our DDH-f based FE scheme computing
inner products in Z published in [CLT18a]. We hereafter detail this instantiation.

Setting the parameters. The parameters are the same as those of the previous instantiation
from HSM-CL, only now encryption randomness is sampled from DZ,σ′ with σ′ > s̃q

√
λ, since

we need to induce a distribution {gr, r ←↩ DZ`,σ′} at distance less than 2−λ from the uniform
distribution in G.

Construction. Fig. 4.4 depicts the generic IPFE of Fig. 4.1 instantiated with Hddh-f .

Corollary 4.23 (of Theorem 4.21). If the DDH-f problem is hard, the IPFE scheme of Fig. 4.4
is ind-fe-cpa-secure.

129

CHAPTER 4. FUNCTIONAL ENCRYPTION FOR COMPUTING INNER PRODUCTS

Setup(1λ, 1µ, 1`):

1. Sample a µ bit prime q

2. (s̃, g, f, gq, Ĝ, G, F,Gq)← Gen(1λ, q)
3. Sample α←↩ DZ,σ′
4. Let h← gα

5. For 1 6 i 6 ` :

6. Sample κ0,i, κ1,i ←↩ DZ,σ
7. Let hpi ← gκ0,ihκ1,i

8. Return msk := (κ0,κ1)
and mpk := (s̃, g, h, f, q, {hpi}i∈[`])

KeyDer(msk,k)

1. If k /∈ K, return ⊥
2. Let (sk0, sk1)← (〈k,κ0〉, 〈k,κ1〉)
3. Return ((sk0, sk1),k)

Enc(mpk,m)

1. If m /∈M, return ⊥
2. Sample r ←↩ DZ,σ′
3. Let z0 ← gr and z1 ← hr

4. For 1 6 i 6 ` :

5. Let ci ← fmihpri
6. Return ct := (z0, z1, {ci}i∈[`])

Dec(mpk, ((sk0, sk1),k), ct)

1. If ct /∈ Ĝ`+2, return ⊥
2. Let M ← (

∏
i∈[`] c

ki
i) · (zsk00 zsk11)−1

3. If M /∈ F , return ⊥
4. sol← Solve(M)

5. If sol > q/2, return (sol− q)
6. Else return sol

Figure 4.4: FE scheme computing inner products in Z from the DDH-f assumption.

4.3.2 Computing Inner Products Modulo a Prime

In all three instantiations we have provided – from DDH, HSM-CL and DDH-f – inner products
are in fact computed in Z. Indeed, even though for DDH, one has R = Z/qZ, since computing
discrete logarithms is hard in a DDH group, the inner product must be small in order to
efficiently decrypt, and hence one cannot actually use the fact the group G is of prime order
to compute inner products modulo a prime. Such a functionality has interesting applications,
namely Agrawal et al. [ALS16, Section 6] motivate functional encryption for the computation
of linear functions modulo a prime p by demonstrating that such a scheme can be turned into
a bounded collusion functional encryption scheme for all circuits1, while Agrawal et (other) al.
[ABP+17] provide a generic transformation from IPFE to trace-and-revoke systems. Naturally
as they are performing linear algebra, their transformation requires the modulus to be prime
and preferably quite large (of the order of 128 or 256 bits).

In this section we build efficient FE schemes computing inner products modulo a prime
from HSM-CL and DDH-f , which we originally published in [CLT18a]. Here one computes
inner products in Z/nfZ where nf = ord(F), however hashing keys still live in Khk := Za.
This results in similar issues to those raised in the LWE and DCR-based schemes of [ALS16].
Namely, since decryption key queries are performed over the integers, an adversary may query
keys for vectors that are linearly dependant over (Z/nfZ)` but independent over Z`. To solve
this issue we require as in [ALS16] that the authority distributing decryption keys keeps track
of all previously revealed decryption keys. This implies that the key generation algorithm must
be stateful.

Our generic construction, as presented above, is not well suited for this setting, since now
the ring in which inner products are computed, and that from which hashing keys are sampled
are different. Essentially, problems occur when constructing the matrix associated to m ∈
(Z/nfZ)`. Using the constructive proof of Lemma 4.8, the matrix Bm (built deterministically

1We note that this application typically calls for small values of p (e.g. p = 2).

130

CHAPTER 4. FUNCTIONAL ENCRYPTION FOR COMPUTING INNER PRODUCTS

from m) would have components in Z/nfZ; since inner products are now computed mod nf ,
the components of Bm are not of bounded norm, an so the determinant of Bm could be a
multiple of nf , and hence Bm may not be invertible modulo nf . Furthermore when used to
prove the security of our protocol, one needs to multiply Bm by vectors of hashing keys, which
live in Z`; therefore the coordinates of Bm need to be lifted in Z before one can perform this
operation. Thus, to capture the information an adversary can get from key derivation queries,
we can no longer use the associated matrix built via Lemma 4.8. Consequently we adopt the
solution used in [ALS16]; namely one recursively proves that each key derivation query reveals
no information to the adversary on the challenge bit β. Then from the adversary’s queries, one
builds a matrix X ∈ Z`×`, which taken mod nf is invertible. As with the associated matrix,
the top ` − 1 rows of X, taken mod nf , generate m⊥ ⊂ (Z/nfZ)`, whereas the last row of
X does not belong to m⊥. Using this matrix in place of the associated matrix, one can then
use similar techniques to those of proof of Theorem 4.21 to demonstrate that the scheme is
ind-fe-cpa.

We illustrate this with constructions from HSM-CL and DDH-f , note however that one
cannot build IPFE modulo a prime from DDH in this way; indeed for large sizes of the inner
product one cannot efficiently decrypt in a DDH group since the DL problem is hard by
assumption.

Inner Products Modulo a Prime from HSM-CL

We here present an FE scheme computing inner products modulo the prime q, but from Hhsm-cl

which samples hashing keys in Z.

Setting the parameters. We use the output (s̃, g, f, gq, Ĝ, G, F,Gq) of the Gen generator of
Definition 3.1; q is a µ-bit prime where µ > λ. The message and vector spaces M and K are
now (Z/qZ)`. Given an encryption of m ∈ (Z/qZ)` and a decryption key for k ∈ (Z/qZ)`,
the decryption algorithm recovers 〈k,m〉 ∈ Z/qZ. To guarantee the scheme’s security we
sample the hashing key hk from DZ`,σ with discrete Gaussian entries of standard deviation
σ >

√
λ · q · s̃ · (

√
`q)`−1. We require σ′ > s̃

√
λ to ensure that {grq , r ←↩ DZ`,σ′} is at distance

less than 2−λ from the uniform distribution in Gq.

A note on efficiency. Observe that the standard deviation σ is chosen much larger than for
the IPFE of Fig. 4.3 computing inner products in Z. This is essentially due to the fact that
vectors in M and K are no longer of bounded norm (for details see proof of Theorem 4.24).
Though this does impact efficiency, we note that a similar blow up in key sizes occurs in the
LWE and DCR based schemes of [ALS16]. In fact, the impact on their protocols is much worse
since, where we can choose the bit size of q fairly small (|q| > λ), schemes resulting from LWE
and DCR must have a much larger message space in order for security to hold. Consequently,
our FE schemes computing inner products modulo a prime are still the most efficient such
schemes to date.

Construction. The Setup and Enc algorithms proceed exactly as in Fig. 4.3, the only differ-
ence being that Enc operates on message vectors m ∈ (Z/qZ)` instead of m ∈ Z`. In Fig. 4.5
we only define algorithms KeyDer and Dec, since they differ from those of Fig. 4.3.

Theorem 4.24. If the HSM-CL problem is hard, the FE scheme computing inner products
in Z/qZ of Fig. 4.5 is ind-fe-cpa-secure.

Proof. The proof proceeds similarly to that in Z (cf. Corollary 4.22), starting with the real
ind-fe-cpa experiment and ending in a game where the ciphertext statistically hides the random

131

CHAPTER 4. FUNCTIONAL ENCRYPTION FOR COMPUTING INNER PRODUCTS

KeyDer(msk,k, st)
Answering the jth key request for k ∈ (Z/qZ)`. At any time the internal state st contains
at most ` tuples (ki,ki, skki) where the ki’s are previously queried vectors and (skki ,ki)
are corresponding secret keys.

1. If k is linearly independent of the ki’s mod q :

2. Set k ∈ {0, . . . , q − 1}` with k = k mod q; skk ← 〈hk,k〉 ∈ Z

3. st := (st, (k,k, skk))

4. If ∃{γi}16i6j−1 ∈ Zj−1 such that k =
∑j−1
i=1 γiki ∈ (Z/qZ)` then:

5. k←
∑j−1
i=1 γiki ∈ Z` ; skk ←

∑j−1
i=1 γiskki ∈ Z

6. Return (skk,k)

Dec(mpk, (skk,k), ct)

1. If ct /∈ Ĝ`+1 return ⊥
2. Let M ← (

∏
i∈[`] c

ki
i) · c−skk0

3. If M /∈ F return ⊥; else return Solve(M).

Figure 4.5: Stateful FE scheme computing inner products in Z/qZ from HSM-CL.

bit β.Games 0 to 2 basically proceed identically to those of the proof of Corollary 4.22. The
only difference is in the key derivation oracle that the adversary A has access to, which now
executes the stateful key derivation algorithm. Thus we have a Game 2′ for which:

|Pr[S′2]− Pr[S0]| 6 δhsm-cl.

Recall that A can issue queries (key, k) for any k ∈ (Z/qZ)` satisfying 〈k,m0〉 = 〈k,m1〉 ∈
Z/qZ. For each query, A is given a secret key (skk,k) as in the real scheme. And in Game 2′

we have: {
c0 = fυ · grq
ci = fmβ,i+υ·hki · hpri , ∀i ∈ [`]

where υ ←↩ Z/qZ and r ←↩ DZ,σ′ . Therefore, the challenge ciphertext information-theoretically
reveals:

zβ := mβ + υ · hk mod q.

We define m := (m1, . . . ,m`) = m1 −m0 ∈ (Z/qZ)`, and, assuming A has performed j
private key queries, for 1 6 i 6 j, we denote ki ∈ (Z/qZ)` the vectors for which keys have
been derived.

We want to demonstrate that from A’s view, the bit β is statistically hidden in Game 2′.
However we cannot use the associated matrix and smoothness as in the proof of Theorem 4.21;
indeed, if we build Bm as in proof of Lemma 4.8 we cannot guarantee that Bm is invertible
modulo q, since det(BmBT

m) could be a multiple of q. Therefore, so as to ensure the queried
vectors ki do not in some way depend on β, we prove via induction that after the j first
private key queries (where j ∈ {0, . . . , ` − 1}), A’s view remains statistically independent
of β, thus proving that the challenge ciphertext in Game 2′ statistically hides β such that
|Pr[S′2]− 1/2| 6 2−λ.

132

CHAPTER 4. FUNCTIONAL ENCRYPTION FOR COMPUTING INNER PRODUCTS

The induction proceeds on the value of j. For j = 0 the adversary can make no private
key queries. With this restriction Games 2 and 2′ are identical. It thus follows from proof of
Theorem 4.21 that for j = 0 the induction hypothesis holds, i.e. A’s view is indeed statistically
independent of β.

Consider j ∈ {0, . . . , ` − 1}. From the induction hypothesis one may assume that at this
point the state st = {(ki,ki, skki) ∈ (Z/qZ)` × Z` × Z}i∈[j] is independent of β. Indeed if A’s
view after j − 1 requests is independent of β then the jth request performed by A must be
so. W.l.o.g. one may assume that the key requests ki performed by the adversary are linearly
independent (otherwise A does not gain additional information from its request). This implies
that the ki’s are linearly independent mod q and generate a subspace of:

m⊥ = {x ∈ (Z/qZ)` : 〈x,m〉 = 0 mod q}

Moreover the set {ki}i∈[j] (generated during private key queries) can be extended to a basis
{ki}i∈[`−1] of m⊥. We define Xtop ∈ Z(`−1)×` to be the matrix whose rows are the vectors ki
for i ∈ [`− 1].

Xtop =

k
T
1

k
T
2
...

k
T
`−1

Let kbot ∈ (Z/qZ)` be a vector such that kbot /∈ m⊥. This vector kbot is constructed deter-
ministically from the set {ki}i∈[j] and m. We define kbot to be the canonical lift of kbot over
Z, and X as:

X =

[
Xtop
k
T
bot

]
The matrix X is built deterministically, invertible modulo q by construction, and independent
of β by induction hypothesis and by construction. Since X is known to A (in the information
theoretical sense), we need only prove that X · zβ is statistically independent of β. And since
Xtop · (m1 −m0) = 0 mod q, we need only consider:

〈kbot, zβ〉 = 〈kbot,mβ〉+ υ〈kbot,hk〉 mod q. (4.8)

Now using X in place of the associated matrix, we can proceed as in proof of Lemma 4.13
to demonstrate that choosing σ >

√
λ · q · s̃ · (

√
`q)`−1 ensures that 〈kbot,hk〉 mod q follows

a distribution 2−λ-close to U(Z/qZ). Note that we have a much larger standard deviation σ
than that obtained in Lemma 4.13, this is due to the fact the entries of X are not of bounded
norm. Indeed, denoting Λ := {t ∈ Z`|Xtop · t = 0 ∧ t = 0 mod s}, the upper bound we get for
λ1(q · Λ) is q · s̃ · (

√
`q)`−1.

Now in Eq. (4.8), gcd(υ, q) = 1 with overwhelming probability, so υ · 〈kbot,hk〉 statistically
hides 〈kbot,mβ〉, and thereby β, thus concluding the proof.

Inner Products Modulo a Prime from DDH-f

As in the HSM-CL based scheme of Fig. 4.5, the key generation algorithm is stateful to
ensure adversaries cannot query keys for vectors that are linearly dependant over (Z/qZ)` but
independent over Z`.
Setting the parameters. These are the same as for the FE scheme computing inner products
modulo q from HSM-CL, only now encryption randomness is sampled from DZ,σ′ with σ′ >
s̃q
√
λ (as in Fig. 4.4).

133

CHAPTER 4. FUNCTIONAL ENCRYPTION FOR COMPUTING INNER PRODUCTS

Construction. Algorithms Setup and Enc proceed exactly as in Fig. 4.4. In Fig. 4.6 we only
define algorithms KeyDer and Dec, which differ from those of Fig. 4.4.

KeyDer(msk,k, st)
Answering the jth key request for k ∈ (Z/qZ)`. At any time the internal state st contains
at most ` tuples (ki,ki, skki) where the ki’s are previously queried vectors and (skki ,ki)
are corresponding secret keys.

1. If k is linearly independent of the ki’s modulo q :

2. Set k ∈ {0, . . . , q − 1}` with k = k mod q

3. skk := (sk0, sk1)← (〈k,κ0〉, 〈k,κ1〉) ∈ Z× Z

4. st := (st, (k,k, skk))

5. If ∃{γi}16i6j−1 ∈ Zj−1 such that k =
∑j−1
i=1 γiki ∈ (Z/qZ)` then:

6. k←
∑j−1
i=1 γiki ∈ Z`; skk ←

∑j−1
i=1 γiskki ∈ Z× Z

7. Return (skk,k)

Dec(mpk, ct, (skk,k))

1. If ct /∈ Ĝ`+2 return ⊥; else parse k = (k1, . . . , k`); skk = (sk0, sk1)

2. Let M ← (
∏
i∈[`] c

ki
i)z−sk00 z−sk11 . If M /∈ F return ⊥; else return Solve(M).

Figure 4.6: Stateful FE scheme for inner products over Z/qZ from DDH-f .

Theorem 4.25. If the DDH-f problem is hard, the FE scheme computing inner products in
Z/qZ of Fig. 4.6 is ind-fe-cpa-secure.

Proof. The proof proceeds similarly to that of Theorem 4.24. We follow the same steps as in
proof of Theorem 4.21 up until the definition of Game 2, the only difference being that the
adversary A queries the stateful key derivation algorithm. We denote Game i′ the variant
of Game i in which the key derivation algorithm is stateful. From the proof of Theorem
Theorem 4.21, it holds that |Pr[S′2]− Pr[S′0]| = δddh-f .

As in the original Game 2, here in Game 2′ the challenge ciphertext information theoreti-
cally reveals zβ := mβ + υ · κ1 mod q.

We define m := (m1, . . . ,m`) = m1 −m0 ∈ (Z/qZ)`; and, assuming A has performed j
private key queries, for 1 6 i 6 j, we denote ki ∈ (Z/qZ)` the vectors for which keys have
been derived.

From here on, to prove that in Game 2′ the challenge ciphertext statistically hides the bit β,
we prove via induction that after the j first private key queries, A’s view remains statistically
independent of β, thus proving that |Pr[S′2]−1/2| 6 2−λ. The induction proceeds on the value
of j.

For j = 0 the adversary can make no private key queries, and so Games 2 and 2′ are iden-
tical. It thus follows from proof of Theorem 4.21 that for j = 0 the induction hypothesis holds,
i.e. A’s view is indeed statistically independent of β. Now consider j ∈ {0, . . . , ` − 1}. From
the induction hypothesis one may assume that at this point the state st = {(ki,ki, skki)}i∈[j] is
independent of β (if A’s view after j−1 requests is independent of β then the jth request must
be so). W.l.o.g. one may assume that key requests ki performed by A are linearly independent.

134

CHAPTER 4. FUNCTIONAL ENCRYPTION FOR COMPUTING INNER PRODUCTS

This implies that the ki’s are linearly independent modulo q and generate a subspace of

m⊥ = {k ∈ (Z/qZ)` : 〈k,m〉 = 0 mod q}.

The set {ki}i∈[j] can be extended to a basis {ki}16i6`−1 of m⊥q. We define Xtop ∈ Z(`−1)×`

to be the matrix whose rows are the vectors ki for i ∈ [`− 1]. Let kbot ∈ (Z/qZ)` be a vector
chosen deterministically, kbot /∈ m⊥, so that the adversary A can also easily compute kbot.
We define kbot to be the canonical lift of kbot over Z, and X as:

X =

[
Xtop
k
T
bot

]
∈ Z`×`.

The matrix X is invertible modulo q, statistically independent of β by induction and by
construction, and computable by A, thus we need only prove that X · zβ is statistically
independent of β. And since Xtop · (m1 −m0) = 0 mod q, we need only consider

〈kbot, zβ〉 = 〈kbot,mβ〉+ υ · 〈kbot,κ1〉 mod q.

Now using X in place of the associated matrix, one can proceed as in proof of Lemma 4.14
to demonstrate that choosing σ > s̃ · q` ·

√
λ · (
√
`)`−1 suffices to ensure that from A’s view,

〈kbot,κ1〉 follows a distribution statistically close to U(Z/qZ). Finally, since υ is sampled
uniformly at random from Z/qZ, υ 6= 0 mod q with all but negligible probability as q is a µ
bit prime, with µ > λ. Thus β is statistically hidden in the expression of 〈kbot, zβ〉, which
concludes the proof.

4.4 IPFE Secure against Active Adversaries from PHFs
Securing cryptosystems against active adversaries is a major goal when designing cryptographic
protocols, as it handles the much more realistic case where adversaries do not follow the
prescribed protocol, and may attempt by any means to extract sensitive information. This also
entails that, since the adversary is more powerful than the less dangerous passive adversary,
devising protocols which are provably secure against active adversaries is considerably more
complex. In this section, we extend the ind-fe-cpa-secure construction of Section 4.3 to handle
active adversaries.

Let R be either the ring Z or Z/qZ for some prime q; GenSM be a subgroup member-
ship problem generator outputting an instance SM := (X̂,X, L̂,W,R); ` and a be pos-
itive integers; M ⊆ R` be the plaintext space; and K ⊆ R` be the space from which
keys are derived. For security, the pair of PHFs associated to SM, denoted (H, eH) must
be (R, a, f, nf , `,M,K, Υ̂,Υ, δL, δvs, δvu)-aip-safe, and we denote E the auxiliary input space
of eH. The construction also requires a CRHF generator H, such that h ←↩ H(1λ) maps
{0, 1}∗ to the efficiently recognisable set E; and a strongly unforgeable OTS scheme OTS :=
(SetupOTS,KeyGenOTS,Sign, Verif). The resulting ind-fe-cca-secure IPFE scheme, depicted in
Fig. 4.7, recovers 〈m,k〉 ∈ R for m ∈M, k ∈ K, and resembles that of [BBL17].

Remark. The auxiliary input space E of eH is chosen to be the output of a CRHF; this
ensures that adversaries – given a ciphertext computed from (c0, e) ∈X×E – cannot compute
a different ciphertext for the same values e and c0. Indeed if it could do so, it needn’t compute
the hash values ci for i ∈ [`], since once could reuse those of the given ciphertext, and thereby
break ciphertext integrity.

135

CHAPTER 4. FUNCTIONAL ENCRYPTION FOR COMPUTING INNER PRODUCTS

Setup(1λ, 1`):

1. SM ← GenSM(1λ)

2. h ← H(1λ); pp← SetupOTS(1λ)

3. For 1 6 i 6 ` :

4. Sample hki ← hashkg(SM)

5. hpi ← projkg(hki)
6. Sample ehki ← ehashkg(SM)

7. ehpi ← eprojkg(ehki)
8. Return mpk := (hp, ehp, h)

and msk := (hk, ehk)

Enc(mpk,m):

1. If m /∈M return ⊥
2. (vk, skOTS)← KeyGenOTS(pp)
3. e← h(vk)

4. Sample (c0, w)← R
5. For 1 6 i 6 ` :

6. ci ← projhash(hpi, c0, w) · fmi

7. ci ← eprojhash(ehpi, c0, w, e)

8. Set ct := (c0, c, c)

9. σ ← Sign(skOTS, ct)
10. Return (ct, vk, σ)

KeyDer(msk,k):

1. If k /∈ K return ⊥
2. skk ← kT · hk ∈ Ra

3. skk ← kT · ehk ∈ R2a

4. Return (skk, skk,k)

Dec(mpk, (skk, skk,k), (ct, vk, σ)):

1. If ct /∈ X̂ ×Π2` then return ⊥
2. If Verif(vk, ct, σ) = 0

3. Then return ⊥
4. e← h(vk)

5. If ehash(skk, c0, e) 6=
∏
i∈[`] c

ki
i

6. Then return ⊥
7. M ← (

∏
i∈[`] c

ki
i) · hash(skk, c0)−1

8. If M /∈ F then return ⊥
9. Return sol← logf (M)

Figure 4.7: IPFE that is ind-fe-cca-secure from projective hash functions

Correctness. As Khk = Ra and Kehk = R2a, one has hk ∈ (R`)a, and ehk ∈ (R`)2a so
kT ·hk ∈ Ra and kT · ehk ∈ R2a. Next, by correctness of OTS, ciphertexts output by Enc pass
the check on line 2 of Dec; and by key homomorphism and correctness of eH:

ehash(skk, c0, e) = ehash(kT · ehk, c0, e) =
∏
i∈[`]

eprojhash(ehpi, c0, w, e)ki =
∏
i∈[`]

ckii .

Now correctness follows from that of the ind-fe-cpa-secure construction of Fig. 4.1.

Security. In Theorem 4.26 we demonstrate the ind-fe-cca-security of the IPFE of Fig. 4.7.
The proof builds upon the ind-fe-cpa-security of the IPFE of Fig. 4.1, additionally using the
vector-universality of eH to ensure ciphertext integrity. This property allows us to ensure
any decryption queries performed by the adversary which could potentially leak information
that is harmful to the security of the scheme are rejected with overwhelming probability. If
this holds, we can demonstrate that an adversary cannot, via its decryption queries, learn
more information than in an ind-cpa attack, and hence by the vector smoothness of H the
scheme is secure. This extends the idea of the universal2 property in the Cramer-Shoup generic
construction for building ind-cca-secure PKE from PHFs. One notable difference is that here,
we don’t consider invalid ciphertexts (recall that these are the ciphertexts which, if decrypted,

136

CHAPTER 4. FUNCTIONAL ENCRYPTION FOR COMPUTING INNER PRODUCTS

may leak sensitive information for a PKE scheme), but invalid decryption queries, where the
adversary specifies both the ciphertext to be decrypted, and the vector k ∈ K from which the
decryption key should be derived.

Theorem 4.26. Let ` and a be positive integers. Let R be either the ring Z or Z/qZ for some
prime q; GenSM be a subgroup membership problem generator outputting an instance SM :=
(X̂,X, L̂,W,R); let H be the associated PHF which we assume to be (R, a, f, nf , `,M, K)-
ipfe-compatible; and let eH be the resulting EPHF2. Assume H is a δcr-hard CRHF generator;
and OTS := (SetupOTS,KeyGenOTS, Sign, Verif) is a δOTS-secure suf-1-cma signature scheme.
If the pair (H, eH) is (R, a, f, nf , `,M,K, Υ̂,Υ, δL, δvs, δvu)-aip-safe then the IPFE scheme of
Fig. 4.7 is ind-fe-cca-secure, and denoting qdec an upper bound on the number of decryption
queries made by the adversary for ind-fe-cca security, it holds that:

Advind-fe-ccaFE,A 6 δL + qdec
(nf
nf − qdec + 1

· δvu + δcr + δOTS
)

+ δvs.

Remark. Before proving the theorem we give a brief comparison to the results obtained
in [BBL17]. Details and comparisons of concrete instantiations can be found in Section 4.5.
Though [BBL17] do not use the notions of vector smoothness and vector universality, we
compare the properties they introduce for PHFs to ours (cf. Appendix A); this allows us to
compare explicitly the security bounds they obtain to ours, as detailed hereafter.

The [BBL17] proof technique upper bounds the adversary’s advantage3 by δbbl = δL +
|∆M|(δvs + δvu) + qdec|∆M|(δcr + δOTS), where |∆M| 6 (4(nf2`)1/2)`. From our security proof
– since qdec = poly(λ), whereas nf is exponential in λ – this advantage is upper bounded
by δus = δL + (δvs + qdecδvu) + qdec(δcr + δOTS). Since |∆M| grows exponentially with `, and
polynomially with nf (which itself is exponential in λ), it is clear that their result requires
much stronger properties from the underlying PHFs to compensate for the factor |∆M|. To
give a concrete example, for nf of 128 bits, ` = 100, and allowing the adversary to make
qdec = 220 queries, one gets |∆M| = 26218, and δbbl = δL + 26218(δvs + δvu) + 26238(δcr + δOTS),
whereas in this work δus = δL + (δvs + 220δvu) + 220(δcr + δOTS). We note that even if hashing
keys are sampled uniformly, which implies δvs = 0, our security proof significantly reduces A’s
advantage, which allows us to use smaller keys, and significantly gain in efficiency.

To prove Theorem 4.26 we first introduce the notion of valid and invalid decryption queries:
valid and rejected decryption queries reveal negligibly more information on the hash keys
than what an adversary A could gain from projection keys and key derivation queries (cf.
Lemmas 4.28 and 4.29). On the other hand the probability an invalid decryption query was
not rejected, thereby potentially leaking relevant information, is negligible (cf. Lemma 4.30).

The analysis of this probability is conditioned on A’s view, and performed a posteriori, i.e.
when A guesses the challenge bit. Hence the notions of valid and invalid decryption queries
can depend on the challenge messages (even though A may request decryption queries before
choosing m0 and m1).

Notation 4.27. Consider a decryption query (decrypt, (ct, vk, σ),k) performed by A, where
ct = (c0, c, c), and k ∈ K. After the post-challenge phase of Expind-fe-ccaIPFE,A , one can categorise
the query. It is said to be valid if either (1) c0 ∈ L̂, or (2) 〈k,m0〉 = 〈k,m1〉 in R, where m0,
m1 are the challenge messages. Any decryption query which is not valid is said to be invalid.

2Obtained via the generic construction detailed in Section 3.4.3
3To simplify the comparison, we neglect a factor qdec in their favour, their adversary in fact has advantage

> δbbl

137

CHAPTER 4. FUNCTIONAL ENCRYPTION FOR COMPUTING INNER PRODUCTS

The above notion is related to that of invalid ciphertexts (cf. Definition 3.21). Indeed
extending the notion of invalid ciphertexts from PKE to IPFE naturally yields that an IPFE
ciphertext is invalid if c0 /∈ L̂ (cf. Notation 4.35). Hence for a decryption query to be invalid,
it is necessary (but not sufficient) that the queried ciphertext is invalid.

Proof of Theorem 4.26. We proceed via a sequence of games. Game0 is the original ind-fe-cca
experiment. In Game2, with all but negligible probability, all the information revealed by
decryption queries is contained in that revealed by public keys, the challenge ciphertext and
key derivation queries (i.e. the information leaked in a chosen plaintext attack). The evolution
of these games is highlighted in Fig. 4.8, the figure does not explicitly depict Game0, as it
follows immediately from the security definition and the scheme of Fig. 4.7. We then proceed
as in proof of Theorem 4.21 to demonstrate that in Game2, A’s advantage is negligible. Let
Si denote the event “The output of Game i is 1”.

1. Sample β ←↩ {0, 1} and (mpk,msk)← Setup(1λ, 1`)

2. Send mpk to A and answer pre-challenge phase queries

3. Receive m0, m1 from A

4. Let (vk, skOTS)← KeyGenOTS(pp) and e← h(vk)

5. Sample (x0, w)← R and let c0 := x0

6. Sample y0 ←↩ 〈Υ〉, y0 6= 1 and overwrite c0 ← x0 · y0 ∈X\L

7. For 1 6 i 6 ` :

8. ci := hash(hki, c0) · fmb,i and ci := ehash(ehki, c0, e)

9. Let ct := (c0, c, c) and compute σ ← OTS.Sign(skOTS, ct)

10. Send (ct, vk, σ) to A and answer post-challenge phase queries

11. Receive β′ from A

12. If (β = β′) return 1, else return 0.

Framed text highlights the evolution from Game0 to Game1.

Double framed text is only executed in Game2.

Figure 4.8: Evolution of security games for proof of Theorem 4.26.

Game0. This is the original ind-fe-cca game, s.t.

Advind-fe-ccaFE,A (λ) = |Pr[S0]− 1/2| .

Game1. C computes ct using the hash keys instead of the projection keys and the witness.
Though computed differently, the values of the ciphertext components remain unchanged, as
is A’s view:

Pr[S0] = Pr[S1]. (4.9)

138

CHAPTER 4. FUNCTIONAL ENCRYPTION FOR COMPUTING INNER PRODUCTS

Game2. Here C samples c0 at random from X\L instead of L. Both games are indistinguish-
able under the δL-hardness of SM, and it holds that:

|Pr[S1]− Pr[S2]| 6 δL. (4.10)

Let us now bound the probability S2 occurs. When A submits its’ guess β′ for β, all A’s
queries are either valid or invalid, since the post-challenge phase is over. Furthermore, since A

has finished collecting information, one can analyse A’s conditional probability of guessing β
given this information. The information A can use for its guess β′ comes from: (1) the public
key mpk; (2) the challenge ciphertext ct; (3) key derivation queries; and (4) decryption queries.

Intuition. We first upper bound the probability any invalid decryption query was not rejected.
Then, assuming all invalid decryption queries were rejected, we demonstrate that all decryption
queries – either valid or rejected – do not provide further information to A than that revealed
by projection keys and key derivation queries. This allows us to reduce the ind-fe-cca-security
of the scheme of Fig. 4.7 to the ind-fe-cpa-security of the scheme of Fig. 4.1, only where the
adversary is also given ĥp← p̂rojkg(hk).

Bounding the information revealed by decryption queries. Let Bad denote the event an invalid
decryption query was not rejected, and Bad the complement event. Denoting qdec an upper
bound on the number of decryption queries performed by A, in Lemma 4.30, we demonstrate
that:

Pr[Bad] 6 qdec(
nf

nf − qdec + 1
· δvu + δcr + δOTS). (4.11)

It holds that Pr[S2] = Pr[S2 ∧Bad] + Pr[S2 ∧Bad] 6 Pr[Bad] + Pr[S2 ∧Bad]. We hereafter
bound Pr[S2 ∧ Bad] (and thus assume Bad does not occur). Precisely, in the following we
demonstrate that

|Pr[S2 ∧Bad]− 1/2| 6 δvs. (4.12)

From Lemmas 4.28 and 4.29, decryption queries which do not cause Bad to occur provide no
further information to A on hk than what it can obtain from projection keys ĥp := p̂rojkg(hk)
and key derivation requests. Moreover, the secret key hk used to mask the bit β is sampled
independently from ehk which has no influence on A’s view of hk. So to analyse A’s view of
β, it suffices to consider the distribution of hk from A’s view, and given this distribution the
information revealed by (c0, c) on β (we can ignore c for this analysis). It thus suffices to prove
the ind-fe-cpa security of a reduced version of the scheme, identical to that of Fig. 4.1, only
where mpk also contains ĥp← p̂rojkg(hk) (at a high level, we have proven ciphertext integrity;
we now prove the ciphertext ensures confidentiality).

Now the only difference between proving ind-fe-cpa-security of the reduced scheme and that
of Fig. 4.1 is that A is now granted the projection keys in ĥp and not only the public projection
keys in hp. This information is only used when one calls upon the δvs-vector smoothness of the
PHF, which by definition holds even given ĥp. Thus |Pr[S2∧Bad]−1/2| 6 δvs. Consequently if
Bad does not occur, the bit β is statistically hidden from A’s view. Putting together Eqs. (4.9)
to (4.12) we have:

Advind-fe-ccaFE,A 6 δL + qdec(
nf

nf − qdec + 1
· δvu + δcr + δOTS) + δvs.

This concludes the proof that the IPFE scheme of Fig. 4.7 is ind-fe-cca-secure.

Lemmas 4.28 to 4.30 hold for all security games of proof of Theorem 4.26.

139

CHAPTER 4. FUNCTIONAL ENCRYPTION FOR COMPUTING INNER PRODUCTS

Lemma 4.28. Consider the IPFE scheme of Fig. 4.7. Valid decryption queries fix no further
information on hk or ehk than what can be deduced of projection keys ĥp := p̂rojkg(hk),
êhp := êprojkg(ehk), and key derivation queries.

Proof. The lemma holds for all security games of proof of Theorem 4.26 since the projec-
tion keys ĥp and êhp (which fix the value of the scheme’s public keys hp = projkg(hk)
and ehp = eprojkg(ehk)), and the information A can learn from key derivation requests do
not change throughout the games. Consider a decryption query (decrypt, (ct, vk, σ),k) where
ct = (c0, c, c), and k ∈ K. Since the query is valid one of the following cases apply:
Case (1): c0 ∈ L̂. Algorithm Dec uses ehk to compute ehash(kT · ehk, c0, e), where e = h(vk),
and hk to compute hash(kT · hk, c0). By correctness and by key homomorphism the PHFs it
holds that:

hash(kT ·hk, c0) = ̂projhash(kT ·̂hp, c0) and ehash(kT ·ehk, c0, e) = ̂eprojhash(kT ·̂ehp, c0, e).

The above values are fixed by k, c0, ĥp and êhp, so no more information is fixed on hk or ehk.
Case (2): 〈k,m0〉 = 〈k,m1〉 in R. Then A could query (key,k) and run the Dec algorithm
itself.

Lemma 4.29. Consider the IPFE scheme of Fig. 4.7. Decryption queries (decrypt, (ct, vk, σ),k)
which are rejected provide no information on hk.

Proof. Let ct = (c0, c, c) where c0 ∈ X̂, and c, c ∈ Π`. Since Lemma 4.28 ensures valid
decryption queries do not leak information, it suffices to consider invalid decryption queries.
If the rejection is due to the OTS verification algorithm, A learns nothing on ehk or hk. Now
suppose the rejection is due to ehash(skk, c0, e) 6=

∏
i∈[`] c

ki
i . Each such rejected decryption

request – information theoretically – provides A with an inequality on ehk, however hk is
sampled independently from ehk, consequently ehk has no influence on A’s view of hk. Thus
this rejection does not leak any information on hk.

Lemma 4.30 bounds the probability invalid decryption queries are not rejected.

Lemma 4.30. Consider the IPFE scheme of Fig. 4.7. Recall that Bad denotes the event
that, by the end of the post-challenge phase, A has performed an invalid decryption query
to which C does not answer ⊥. Assume H is a δcr-hard CRHF generator; and OTS :=
(SetupOTS,KeyGenOTS,Sign,Verif) is a δOTS-secure suf-1-cma signature scheme. Then denoting
qdec an upper bound on the number of decryption queries performed by A it holds that:

Pr[Bad] 6 qdec(
nf

nf − qdec + 1
· δvu + δcr + δOTS).

Proof. First observe that only the challenge ciphertext ct differs between Game0, Game1 and
Game2. In Game0 and Game1 since ct is computed from c0 ∈ L, it leaks no further informa-
tion on the hashing keys hk, ehk than that revealed by the public projection keys. We thus
bound the probability Bad occurs in Game2, since this is the scenario where A has the most
information on hk, ehk.

The proof proceeds in two steps: (1) use the vector universality of eH to upper bound
Pr[Bad] for qdec = 1, i.e. the probability that A’s first invalid decryption query is not rejected;
(2) take into account the information leaked by the rejection of such decryption queries. This
allows to bound the probability Bad occurs after qdec decryption queries, for qdec > 1. Since
hk is sampled independently from ehk, and has no influence on the latters’ value, it suffices
to consider the distribution of ehk from A’s view (we ignore that of hk, which is not used for

140

CHAPTER 4. FUNCTIONAL ENCRYPTION FOR COMPUTING INNER PRODUCTS

verifying ciphertext integrity). Moreover we consider A’s success probability given êhp, which
is at least that given ehp.

Let M ∈ ∆M be a random variable (A’s possible choices for m0 −m1); and BM ∈ R`×`

be the associated matrix. The current analysis is performed à posteriori, which implies m0

and m1 are fixed, so denoting m := (m1−m0) ∈ R` we condition A’s success probability on
M = m. Let bm1 , . . . , b

m
` denote the rows of Bm.

Step 1. Before its first invalid decryption query, A has access to:

1. the vector ehp, whose value is fixed by that of êhp;

2. the ciphertext ct, which fixes c0 ∈ X, e = h(vk) ∈ E; and ci = ehash(ehki, c0, e) for
i ∈ [`];

3. key derivation queries; since (b1, . . . , b`−1) is a basis of m⊥, and any (key,k) queried by a
valid A must satisfy k ∈m⊥, any such k is a linear combination of vectors b1, . . . , b`−1.
Thus for some vj ∈ R2a, j ∈ [` − 1], the information leaked via key derivation queries
on ehk is upper bounded by the knowledge of events vj = bTj · ehk for j ∈ [`− 1].

4. valid decryption queries, which reveal no more information than êhp, and key derivation
queries (cf. Lemma 4.28).

Now consider the first invalid decryption query in performed by A, denoted (decrypt, (ct′, vk′, σ′),k′),
to which the challenger answers res, where ct′ = (c′0, c

′, c′) and e′ ← h(vk′). As such it satisfies
c′0 ∈ X̂\L̂ and k′ /∈ m⊥. If we let π :=

∏
i∈[`](c

′
i)
k′i , applying the δvu-vector-universality of

eH ensures that, if (c0, e) 6= (c′0, e
′), the probability this first invalid decryption query satisfies

res 6= ⊥ is upper bounded by δvu.
Let us now upper bound the probability that (c0, e) = (c′0, e

′). Since A cannot query
the challenge ciphertext to the decryption oracle, it holds that (ct′, vk′, σ′) 6= (ct, vk, σ). We
consider two cases:

• vk′ = vk and e = e′ mod nf but (ct, σ) 6= (ct′, σ′). In this case, either OTS.Verif(vk, ct′,
σ′) = 0 and the oracle rejects, or OTS.Verif(vk, ct′, σ′) = 1, i.e. A has forged a signature
for ct′ with verification key vk, thus breaking the unforgeability of OTS. This occurs
with probability 6 δOTS.

• vk′ 6= vk but e = e′ mod nf . In this case we have found a collision for h. This occurs with
probability 6 δcr.

Thus the probability this first invalid decryption query is not rejected is upper bounded by
δvu + δcr + δOTS. It now remains to consider the information revealed by each rejected invalid
decryption query.
Step 2. Consider an invalid query (decrypt, (ct, vk, σ),k) which is rejected. Let (c0, c, c) = ct
and π ←

∏
i∈[`] c

ki
i . If the rejection is due to the OTS verification algorithm, A learns nothing

about ehk. Now suppose the rejection is due to ehash(kT · ehk, c0, e) 6= π. Since c0 /∈ L̂, and
eH is (Υ̂,Υ, F)-decomposable, there exist unique x ∈ L̂ and y ∈ 〈Υ〉 satisfying c0 = x · y. By
the homomorphic properties of eH we can write:

ehash(kT · ehk, c0, e) = ehash(kT · ehk, x, e) · ehash(kT · ehk, y, e),

where information theoretically, the value of ehash(kT · ehk, x, e) is already fixed by the pro-
jection keys and c0. Consequently, the rejection of this query rules out one possible value for
ehash(kT · ehk, y, e) ∈ F , and thereby a proportion of 1/nf of the possible values for kT · ehk.

141

CHAPTER 4. FUNCTIONAL ENCRYPTION FOR COMPUTING INNER PRODUCTS

Thus the probability that A’s ith invalid query is not rejected is upper bounded by
(nf
nf−(i+1) · δvu + δcr + δOTS). This allows us to conclude that, after qdec decryption queries:

Pr[Bad] 6 qdec(
nf

nf − qdec + 1
· δvu + δcr + δOTS).

Running Example 1 – Instantiation from DDH

Instantiating the IPFE of Fig. 4.7 with Hddh yields the IPFE scheme depicted in Fig. 4.9.

Setting the parameters. We use the output (G, g, q) of the GenDL generator of Defini-
tion 2.2, and consider generators g0, g1 ←↩ G. We also use two CRHF generators HG and H,
such that h ←↩ HG(1λ) maps {0, 1}∗ to G; and Γ←↩ H(1λ) maps G3 to {0, . . . , q − 1}. Finally
we use a strongly unforgeable OTS scheme OTS := (SetupOTS,KeyGenOTS,Sign,Verif).

The message and key spaces are subsets of (Z/qZ)`. The decryption algorithm recovers
〈k,m〉 over Z/qZ if it is sufficiently small for the discrete logarithm of g〈k,m〉 to be efficient.
Hashing key coordinates are sampled from U(Z/qZ), as is the encryption randomness.

Corollary 4.31 (of Theorem 4.26). If the DDH problem is hard, the IPFE scheme of Fig. 4.9
is ind-fe-cca-secure.

Running Example 2 – Instantiation from HSM-CL

Instantiating the IPFE of Fig. 4.7 with Hhsm-cl yields the IPFE scheme depicted in Fig. 4.10.

Setting the parameters. We use the same parameters as for the ind-fe-cpa-secure scheme
of Fig. 4.3. We also use two CRHF generators H

Ĝ
and H, such that h ←↩ H

Ĝ
(1λ) maps {0, 1}∗

to Ĝ; and Γ ←↩ H(1λ) maps Ĝ2 to {0, . . . , q − 1}. Finally we use a strongly unforgeable OTS
scheme OTS := (SetupOTS,KeyGenOTS,Sign,Verif).

Corollary 4.32 (of Theorem 4.26). If the HSM-CL problem is hard, the IPFE scheme of
Fig. 4.10 is ind-fe-cca-secure.

Walking Example – Instantiation from DCR

As in the ind-fe-cpa setting, one can build both a projective hash function Hdcr and an ex-
tended projective hash function eHdcr from the decisional composite residuosity assumption
which satisfy all the properties required in Theorem 4.26 to build ind-fe-cca-secure IPFE. The
resulting instantiation would very much resemble the HSM-CL based instantiation of running
example 2. We do not detail this DCR based instantiation of our generic construction here.
However in Section 4.5 we use this instantiation to demonstrate the concrete improvements
our proof technique achieves compared to the work of [BBL17]. Indeed, as they also have an
instantiation from DCR (which is their only scheme able to decrypt large inner products) the
comparison is fair and meaningful.

Running Example 3 – Instantiation from DDH-f

Instantiating the IPFE of Fig. 4.7 with Hddh-f yields the DDH-f based IPFE scheme depicted
in Fig. 4.11.

142

CHAPTER 4. FUNCTIONAL ENCRYPTION FOR COMPUTING INNER PRODUCTS

Setup(1λ, 1`):

1. (G, g, q)← GenDL(1λ)

2. g0, g1 ←↩ G
3. h ←↩ HG(1λ); Γ←↩ H(1λ)

4. pp← SetupOTS(1λ)

5. For 1 6 i 6 ` :

6. (κ0,i, κ1,iκ2,i, κ3,i, κ4,i, κ5,i)←↩ (Z/qZ)6

7. hpi ← g
κ0,i
0 g

κ1,i
1

8. ehp0,i ← g
κ2,i
0 g

κ3,i
1 , ehp1,i ← g

κ4,i
0 g

κ5,i
1

9. Return msk := (κ0,κ1,κ2,κ2,κ3,κ4,κ5)
mpk := (G, q, g, g0, g1,hp, ehp0, ehp1, h ,Γ, pp)

KeyDer(msk,k)

1. If k /∈ K, return ⊥
2. (sk0, sk1)← (〈k,κ0〉, 〈k,κ1〉) ∈ Z

3. For 2 6 µ 6 5, let skµ ← 〈k,κµ〉 ∈ Z

4. skk := (sk0, sk1);

5. skk := (sk2, sk3, sk4, sk5)

6. Return (skk, skk,k)

Enc(mpk,m)

1. If m /∈M, return ⊥
2. (vk, skOTS)← KeyGenOTS(pp)
3. e← h(vk)

4. r ←↩ Z/qZ; let (x0, x1)← (gr0, g
r
1)

5. γ ← Γ(x0, x1, e)

6. For 1 6 i 6 ` :

7. ci ← gmihpri
8. ci ← (ehp0,iehp

γ
1,i)

r

9. Let ct := (c0, c, c)

10. σ ← Sign(skOTS, ct)
11. Return (ct, vk, σ)

Dec(mpk, (skk, skk,k), (ct, vk, σ))

1. If ct /∈ G2`+2, return ⊥
2. If Verif(vk, ct, σ) = 0, return ⊥
3. e← h(vk); γ ← Γ(x0, x1, e)

4. If xsk2+γsk40 xsk3+γsk51 6=
∏
i∈[`] c

ki
i

5. Then return ⊥
6. M ← (

∏
i∈[`] c

ki
i) · (x−sk00 x−sk11)

7. Return logg(M)

Figure 4.9: Running Example 1 – ind-fe-cca-secure IPFE scheme from the DDH assumption.

Setting the parameters. We use the same parameters as for the ind-fe-cpa-secure scheme
of Fig. 4.4. We also use two CRHF generators H

Ĝ
and H, such that h ←↩ H

Ĝ
(1λ) maps {0, 1}∗

to Ĝ; and Γ ←↩ H(1λ) maps Ĝ3 to {0, . . . , q − 1}. Finally we use a strongly unforgeable OTS
scheme OTS := (SetupOTS,KeyGenOTS, Sign,Verif).

Corollary 4.33 (of Theorem 4.26). If the DDH-f problem is hard, the IPFE scheme of
Fig. 4.11 is ind-fe-cca-secure.

4.5 Efficiency Comparisons
In this section, we first compare the efficiency of our functional encryption schemes computing
inner products modulo a prime q (Figs. 4.5 and 4.6) to the schemes of [ALS16], which compute
inner products modulo either some prime q (for their LWE based scheme), or modulo an
RSA integer N (for their DCR based scheme). We then focus on our ind-fe-cca-secure generic
construction, and illustrate the huge efficiency improvements we gain compared to the work of
[BBL17]. We do not compare our ind-fe-cpa-secure FE schemes computing inner products in Z,
since compared to prior work, efficiency gains here are less significant. The main interest of our
constructions of our ind-fe-cpa-secure constructions of Section 4.3 was to smoothly guide the
reader to the construction and security proof for the ind-fe-cca-secure construction of Fig. 4.7.

143

CHAPTER 4. FUNCTIONAL ENCRYPTION FOR COMPUTING INNER PRODUCTS

Setup(1λ, 1µ, 1`):

1. Sample a µ bit prime q

2. ppCL ← Gen(1λ, q)
3. h ←↩ HG(1λ); Γ←↩ H(1λ)

4. pp← SetupOTS(1λ)

5. For 1 6 i 6 ` :

6. Sample hki, ehk0,i, ehk1,i ←↩ DZ,σ
7. Let hpi ← ghkiq

8. Let (ehp0,i, ehp1,i)← (gehk0,iq , g
ehk1,i
q)

9. Return msk := (hk, ehk0, ehk1) and
mpk := (ppCL, q,hp, ehp0, ehp1, h ,Γ, pp)

KeyDer(msk,k)

1. If k /∈ K, return ⊥
2. skk ← 〈k,hk〉
3. sk0 ← 〈k, ehk0〉;
4. sk1 ← 〈k, ehk1〉
5. Return (skk, sk0, sk1,k)

Enc(mpk,m)

1. If m /∈M, return ⊥
2. (vk, skOTS)← KeyGenOTS(pp);
3. e← h(vk)

4. Sample r ←↩ DZ,σ′ ; set c0 ← grq

5. γ ← Γ(c0, e)

6. For 1 6 i 6 ` :

7. ci ← fmihpri
8. ci ← (ehp0,iehp

γ
1,i)

r

9. Let ct := (c0, c, c);

10. σ ← Sign(skOTS, ct)
11. Return (ct, vk, σ)

Dec(mpk, (skk, sk0, sk1,k), (ct, vk, σ))

1. If ct /∈ Ĝ2`+1, return ⊥
2. If Verif(vk, ct, σ) = 0, return ⊥
3. e← h(vk); γ ← Γ(c0, e)

4. If csk0+γsk10 6=
∏
i∈[`] c

ki
i , return ⊥

5. M ← (
∏
i∈[`] c

ki
i) · (c−skk0)

6. If M /∈ F , return ⊥
7. sol← Solve(M)

8. If sol > q/2, return (sol− q)
9. Else return sol

Figure 4.10: Running Example 2 – ind-fe-cca-secure IPFE from the HSM-CL assumption.

4.5.1 Modular IPFE Secure against Passive Adversaries

We put forth two generic constructions of FE for the evaluation of inner products modulo q.
Both schemes are based on variants of Elgamal in the same group Ĝ and both sample their
master secret keys from Gaussian distributions with the same standard deviation. As a result
their asymptotic complexities are the same. We compare an implementation of our HSM-CL
based IPFE mod q of Fig. 4.5 within the class group of an imaginary quadratic field to the
LWE based variant of [ALS16] (in the upcoming paragraph); and to their Paillier variant (in
Table 4.1). These are the most relevant comparisons since DDH variants do not allow a full
recovery of large inner products over Z/qZ.

Comparison with the LWE based scheme of [ALS16]. Parameter choices for lattice-
based cryptography are complex, indeed [ALS16] do not provide a concrete set of parameters.
This being said, using [ALS16, Theorem 3], and setting log q = λ as in Table 4.1, we give
rough bit sizes for their LWE based FE scheme computing inner products over Z/qZ. Basic
elements are integers modulo q̄, where q̄ is a parameter of the scheme which must be of size
` as q̄ ≈ 2` is required for security to hold. The largest component in the master public key

144

CHAPTER 4. FUNCTIONAL ENCRYPTION FOR COMPUTING INNER PRODUCTS

Setup(1λ, 1µ, 1`):

1. Sample a µ bit prime q

2. ppCL ← Gen(1λ, q)
3. Sample α←↩ DZ,σ′ ; let h← gα

4. h ←↩ HG(1λ); Γ←↩ H(1λ)

5. pp← SetupOTS(1λ)

6. For 1 6 i 6 ` :

7. (κ0,i, κ1,iκ2,i, κ3,i, κ4,i, κ5,i)←↩ DZ6,σ
8. hpi ← gκ0,ihκ1,i

9. ehp0,i ← gκ2,ihκ3,i

10. ehp1,i ← gκ4,ihκ5,i

11. Return:
msk := (κ0,κ1,κ2,κ2,κ3,κ4,κ5)
mpk := (ppCL, h, q,hp, ehp0, ehp1, h ,Γ, pp)

KeyDer(msk,k)

1. If k /∈ K, return ⊥
2. Let (sk0, sk1)← (〈k,κ0〉, 〈k,κ1〉)
3. For 2 6 µ 6 5 :

4. Let skµ ← 〈k,κµ〉 ∈ Z

5. skk := (sk0, sk1);

6. skk := (sk2, sk3, sk4, sk5)

7. Return (skk, skk,k)

Enc(mpk,m)

1. If m /∈M, return ⊥
2. (vk, skOTS)← KeyGenOTS(pp);
3. e← h(vk)

4. r ←↩ DZ,σ′ ;
5. (x0, x1)← (gr, hr)

6. γ ← Γ(x0, x1, e)

7. For 1 6 i 6 ` :

8. ci ← fmihpri
9. ci ← (ehp0,iehp

γ
1,i)

r

10. Let ct := (c0, c, c);

11. Let σ ← Sign(skOTS, ct)
12. Return (ct, vk, σ)

Dec(mpk, (skk, skk,k), (ct, vk, σ))

1. If ct /∈ Ĝ2`+2, return ⊥
2. If Verif(vk, ct, σ) = 0, return ⊥
3. e← h(vk); γ ← Γ(x0, x1, e)

4. If xsk2+γsk40 xsk3+γsk51 6=
∏
i∈[`] c

ki
i

5. Then return ⊥
6. M ← (

∏
i∈[`] c

ki
i) · (x−sk00 x−sk11)

7. If M /∈ F , return ⊥
8. sol← Solve(M)

9. If sol > q/2, return (sol− q)
10. Else return sol

Figure 4.11: Running Example 3 – ind-fe-cca-secure IPFE from the DDH-f assumption.

mpk consists of λ2`3 elements, so mpk is of size greater than λ2`4. The component zx in secret
keys is the product of a vector from (Z/qZ)` with a matrix, which yields a secret key vector
made up of λ`2 inner products, where each inner product is of size `λ. Thus these keys are of
size λ2`3. Finally ciphertexts consist of λ`2 elements, and are thus of size greater than λ`3. As
a result, although it may be hard to compare the complexities in λ, for a fixed security level,
the complexity in ` for all the parameters of the LWE based scheme is in `3 or `4 whereas we
are linear in ` as one can see in Table 4.1. For example, for λ = 128, ` = 100, their decryption
keys are of approximately 234 bits vs. 13852 bits in our instantiation.

Comparison with the DCR based scheme of [ALS16]. To instantiate the HSM-CL
based IPFE of Fig. 4.5, we use the instantiation for the CL framework which is detailed
in Section 3.1.2; bit sizes of elements in Table 4.1 are chosen as detailed in Section 2.6 (in
particular see Table 2.1). Ciphertexts in both protocols consist of ` + 1 group elements. To
simplify the comparison we consider linearly independent decryption key queries (ignoring

145

CHAPTER 4. FUNCTIONAL ENCRYPTION FOR COMPUTING INNER PRODUCTS

the vectors in Z`). As a result, we have, for our scheme, the inner product of a vector from
(Z/qZ)` with a vector sampled from a discrete Gaussian with standard deviation greater than√
λqs̃(
√
`q)`−1 over Z` vs. the inner product of a vector of (Z/NZ)` with a vector sampled

from a discrete Gaussian with standard deviation greater than
√
λ(
√
`N)`+1 over Z`. We note

that using larger message spaces would be more favorable to their Paillier based scheme. Our
protocols are the most suited for double or quadruple precision computations, where a 128 bits
message space is large enough, since the DCR-based construction from [ALS16] would add a
large overhead cost, while constructions from DDH could not decrypt the result.

λ = 112 λ = 128

bit size HSM-CL DCR HSM-CL DCR

msk `(112`+ 687) `(2048(`+ 1) + 3) `(128`+ 928) `(3072(`+ 1) + 4)
ciphertext 1572(`+ 1) 4096(`+ 1) 2084(`+ 1) 6144(`+ 1)
enc. expo. 687 2046 928 3070
dec. expo. `+ 112(`+ 1) + 684 `+ 2048(`+ 2) `+ 128(`+ 1) + 928 `+ 3072(`+ 2)

* ignoring an additive term (`± 1) log(
√
`)

Table 4.1: Comparing bit sizes of our modular HSM-CL-based IPFE of Fig. 4.5 to the DCR
scheme of [ALS16]

In terms of timings, the exponents involved in our (multi-)exponentiations (for encryption
and decryption) are significantly smaller than those in [ALS16], and the group size is also
smaller. Indeed, the encryption of Paillier’s variant involves (` + 1) exponentiations to the
power a (|N | − 2)-bit integer modulo N2, whereas our protocol involves one exponentiation to
the power a |σ′|-bit integer in Cl(q3q̃), where σ′ > s̃

√
λ and ` (multi-)exponentiations whose

maximum exponent size is also |σ′|. Decryptions involve respectively a multi-exponentiation
whose maximum exponent size is lower than `σN = `

√
λ(
√
`N)`+1N for [ALS16] and `qσ =

`q
√
λqs̃(
√
`q)`−1 for our protocol.

Timings are computed theoretically as explained at the end of Section 2.6. Table 4.2 shows
that our instantiation from HSM-CL fares better for decryption, while encryption is faster
with an implementation from DCR. In the table we set ` = 100, but as all parameters depend
linearly in `, one can extrapolate timings for other values of `. We gain firstly from the fact that
we can use smaller parameters for the same security level and secondly, because our security
reductions allow to replace N ` with q` in the derived keys. Thus the gain is not only in the
constants and our scheme becomes more and more interesting as the security level and the
dimension ` increase.

λ = 112, ` = 100 λ = 128, ` = 100 λ = 192, ` = 100

HSM-CL DCR HSM-CL DCR HSM-CL DCR

secret key bitsize 12099 208999 13956 313448 21307 783464
encryption time 3.8s 0.9s 6.7s 3s 26.7s 32.2s
decryption time 0.7s 0.9s 1s 3.1s 3.2s 33.2s

Table 4.2: Timings: modular IPFE from HSM-CL [CLT18a] vs. IPFE from DCR [ALS16]

146

CHAPTER 4. FUNCTIONAL ENCRYPTION FOR COMPUTING INNER PRODUCTS

4.5.2 IPFE Secure against Active Adversaries

We here illustrate the huge gains in efficiency provided by our security proof for Theorem 4.26,
compared to the work of [BBL17]. For all the upcoming comparisons we ommit the negligible
probabilities of breaking the CRHFs and one time signatures (these are of little interest to our
comparaison, their cost is marginally larger in [BBL17] due to a larger number of instances of
the EPHFs).

Instantiations from DDH

We compare our DDH-based IPFE to that of [BBL17]. To instantiate the generic protocol of
Section 4.4 from DDH we use Hddh of running example 1. This PHF (first introduced in [CS02])
is also that used by [BBL17]. Since hashing keys are sampled from U((Z/qZ)2), Hddh is 0-vector
smooth, while eHddh is 1/q-vector universal. Consequently our security proof upper bounds the
advantage of any ind-fe-cca adversary by δus 6 δDDH+qdec(q−qdec+1)−1, whereas, the [BBL17]
proof technique bounds the adversary’s advantage by: δbbl 6 δDDH + qdecq

−ν |∆M|, where
|∆M| = (4(q(2`)−1)1/2)` depends on the message space, and ν corresponds to the number
of repeated instances of the hash function eHddh required for q−ν |∆M| to be negligible, i.e.
ν := blog2(|∆M|) · λ−1 + 1c. Thus our proof technique allows to reduce decryption keys by
(ν − 1) ring elements, ciphertexts and public keys by `(µ− 1) group elements, while ensuring
the same security guarantees.

In Table 4.3 we compare ciphertext and decryption key sizes needed to guarantee equivalent
security levels for [BBL17] and for our work, for ` := 100. We instantiate the DH group
from elliptic curves to estimate group element sizes. Regarding computational complexity,
encryption requires `(ν + 1) exponentiations in G while decryption requires 2ν + 1 multi-
exponentiations in G. For the parameter sizes of Table 4.3, this yields a speed-up factor of
25.

Table 4.3: Comparing our IPFE scheme and that of [BBL17] from DDH

λ = 112 λ = 128

size this work [BBL17]* this work [BBL17]*

q (bits) 224 224 256 256
ν 1 50 1 50
decryption key (skk, skk) (kB) 0.17 5.7 0.2 6.5
ciphertext (kB) 5.6 142.8 6.4 163.2

* For message space a subset of (Z/qZ)`, |∆M| = (4(q2`)
1/2)`, ν = 1 + log2(|∆M|)

λ and ` = 100.

Instantiations from HSM-CL vs. DCR.

We here compare our HSM-CL-based IPFE (Fig. 4.10), which to lighten the upcomming
discussion we call Σhsm−cl using class groups to both a DCR instantiation of our IPFE and
the DCR variant of [BBL17], denoted respectively Σdcr and Σbbl.

We first observe that ciphertexts in Σhsm−cl and Σdcr consist of far less group elements, as
explained hereafter. Let Mz denote an upper bound on the infinite norm of message vectors;
|∆M| := (4Mz)`; as in the instantiation from DDH, ν corresponds to the number of repeated
instances of the EPHF required to thwart |∆M| in the adversary’s advantage. For Σbbl one
must choose ν > λ+ log2(2qdec|∆M|) (this is the bound they give), whereas we can set ν = 1

147

CHAPTER 4. FUNCTIONAL ENCRYPTION FOR COMPUTING INNER PRODUCTS

(for both Σhsm−cl and Σdcr). For all three schemes, ciphertexts consist of ((1 + ν)`+ 1) group
elements. Regarding decryption keys, in Σhsm−cl they consist of three inner products between
a vector from (Z/MzZ)` with a vector sampled from DZ`,σ, where σ >

√
2λq3/2s̃, whereas in

Σdcr and Σbbl, they consist in one inner product of a vector of (Z/MzZ)` with a vector sampled
in {0, . . . , bMN2/4c}`, and 2ν inner products of a vector of (Z/MzZ)` with a vector sampled
in{0, . . . , bνMN2/2c}, where M is chosen s.t. Mz/M is negligible.

We note that with HSM-CL, one has Mz := (q2`)
1/2, whereas with DCR, Mz := (N2`)

1/2.
For a fair comparison however, to compute bit sizes in Table 4.4, we use the same bound
Mz = (2λ

2`)1/2 on the size of message and key components for both schemes. As a final note,
comparing Σhsm−cl and Σdcr (both resulting from our construction), we see that an instantiation
from DCR yields larger ciphertexts and decryption keys. For standard levels of security, Σdcr
yields faster encryption and decryption than Σhsm−cl, however for higher levels of security (192
bits and beyond), this trend is inverted. To compute bit sizes in Table 4.4 we let ` := 100.

λ = 112 λ = 128
HSM-CL DCR HSM-CL DCR

size this work (our proof) [BBL17] this work (our proof) [BBL17]

ν 1 1 5551 1 1 6367
group elt. (bits) 1572 4096 4096 2084 6144 6144
(skk, skk) (kB) 0.3 0.9 3 168 0.4 1.3 5315
ciphertext (kB) 39 102.9 284 262 52 154.4 489 062

Enc. (sec.) 9.5 3.4 9962 16.13 12.04 38 342
Dec. (sec.) 0.16 0.05 203 0.27 0.19 804

Table 4.4: Our ind-fe-cca-secure IPFE from HSM-CL and DCR vs. the DCR scheme of [BBL17]

4.6 Applications and Perspectives for Future Work

4.6.1 Application to Non Zero Inner Product Encryption

We here briefly discuss a concrete application for ind-fe-cca-secure IPFE, namely the construc-
tion of non zero inner product encryption secure against active adversaries. This in turn allows
to instantiate broadcast encryption schemes allowing for efficient revocation of users’ ability to
decrypt, and where the collusion and misbehaviour of users does not compromise the scheme’s
security.

Consider a positive integer λ. Non zero inner product encryption (NIPE), introduced in
[KSW08], is a special from of functional encryption, which consists of the following algorithms:

• N.Setup(1λ): a PPT algorithm which on input a security parameter λ and an integer `
outputs a master key pair (msk,mpk);

• N.Enc(mpk,m,x): a PPT encryption algorithm which takes as input the public key mpk,
a message m and a vector x, computes a ciphertext cx associated to x, and outputs
ct := (cx,x);

• N.KeyDer(mpk,msk,k): a PT key derivation algorithm which on input both master keys
and a vector k computes a decryption key skk associated to k, and outputs (skk,k);

• N.Dec(mpk, (skk,k), (cx,x)): a DPT decryption algorithm which on input the public key
mpk, a decryption key (skk,k) associated to k, and a ciphertext (cx,x) encrypting m

148

CHAPTER 4. FUNCTIONAL ENCRYPTION FOR COMPUTING INNER PRODUCTS

associated to x, outputs either the message m if 〈x,k〉 6= 0 (and the ciphertext is honestly
generated), otherwise it outputs ⊥.

We do not formally define adaptive security against chosen plaintext (ind-nipe-cpa) and chosen
ciphertext (ind-nipe-cca) attacks for NIPE schemes, these notions are quite intuitive given the
definitions provided in Section 4.1.2.

Recently Katsumata and Yamada [KY19] devised a generic yet simple construction allowing
to build NIPE schemes which are ind-nipe-cpa-secure from IPFE schemes attaining the analogue
ind-fe-cpa-security notion. In a nutshell, the construction works as follows: N.Setup is the IPFE
Setup algorithm; N.Enc on input m and a vector x runs the IPFE algorithm Enc(mpk,mx)
to obtain cx, it then outputs (cx,x); N.KeyDer is exactly KeyDer of the IPFE, outputting
(skk,k). Finally N.Dec, on input mpk, (skk,k), and (cx,x) computes z ← Dec(mpk, skk, c).
Notice that if the protocol was executed correctly z = m〈x,k〉; and since k and x are part of
the decryption key and ciphertext respectively, one can check whether 〈x,k〉 = 0; if so, or if
z = ⊥, N.Dec outputs ⊥, else it outputs z/〈x,k〉.

Katsumata et al. demonstrate that if there exists an adversary which breaks the ind-nipe-
cpa-security of the NIPE, one can build another algorithm breaking the ind-fe-cpa-security of
the underlying IPFE. The reduction is straightforward, and can easily be extended to the CCA
setting. Indeed, using analogue notions of valid and invalid decryption queries to those used
to prove security of Theorem 4.26, observe that any valid decryption query reveals no further
information than that available in a chosen plaintext attack, whereas invalid decryption queries
– which could leak sensitive information – would also be invalid for the underlying IPFE, and
as such would be rejected. Thus our ind-fe-cca-secure IPFE yields for free a construction for
ind-fe-cca-secure secure NIPE.

As demonstrated in [AL10], NIPE schemes can in turn be used to build identity-based
revocation (IBR) schemes, a type of broadcast encryption scheme allowing for efficient revo-
cation of users’ ability to decrypt. Strengthening the security of NIPE schemes to deal with
active adversaries allows to devise IBR schemes where the collusion and misbehaviour of users
does not compromise the scheme’s security.

4.6.2 Simulation Based Security

There exist two models in which one can prove security for functional encryption schemes. The
first is the indistinguishability based model, which we have considered so far, where security
holds if the adversary cannot distinguish the encryption of two messages of its choosing. This
is the security model which was traditionally used to prove security of identity based encryp-
tion schemes [Sha84,Coc01,BF01], attribute based encryption schemes [SW05], or searchable
encryption schemes [BDOP04], all of which were forerunners to the emergence of functional
encryption [AL10,LOS+10,OT10], formally defined in [BSW11,O’N10], which encompasses all
of these primitives.

The second security model appeared comparatively late, with the work of [BSW11], in
which they observed that for general functionalities, the indistinguishability based model is
not sufficient for proving security of functional encryption, as it fails to rule out intuitively
insecure systems. This lead to a definition of security in the stronger simulation based secu-
rity model [BSW11, O’N10] (so strong in fact, that for some functionalities, it is impossible
to achieve [BSW11, AGVW13]). This is the alternative model to game based definitions pre-
sented in Section 2.3.2. It was shown by Gorbunov et al. [GVW12] that adaptive simulation
based security (sim-fe-cpa) implies adaptive indistinguishability based security, while O’Neill
[O’N10] demonstrated that for a certain class of functions including the inner product func-

149

CHAPTER 4. FUNCTIONAL ENCRYPTION FOR COMPUTING INNER PRODUCTS

tion, ind-fe-cpa-secure schemes are also sim-fe-cpa-secure in the restricted model where the
adversary makes all its’ key requests before seeing the challenge ciphertext.

Though our ind-fe-cpa-secure generic construction of Section 4.3, as is, does not attain
simulation based security, in Section 4.6.2 we discuss sufficient additional requirements on the
underlying PHFs to do so, at least against passive adversaries. For this discussion to make
sense, we here provide the definition of simulation based security against passive adversaries
for FE [BSW11]. As we have not studied the question of security against active adversaries in
the simulation based model, defining the security model is unnecessary.

Intuitively, to attain simulation-based security, one must exhibit a PPT simulator S, such
that the view of any PPT adversary A can be simulated by S – which does not see the
challenge message m∗ – but is given access to pairs 〈m∗,ki〉 where the ki ∈ K are the vectors
for which A queries keys.

The real/ideal experiments. For λ ∈ N we denote by ExprealFE,A(λ), ExpidealFE,A(λ) the random
variables defined via the following experiments involving the scheme FE, the adversary A :=
(A1,A2), and a PPT simulator S = (Setup∗,KeyDer∗0,Enc

∗,KeyDer∗1):

ExprealFE,A(λ)

1. (mpk,msk)← Setup(1λ).

2. A1(1λ,mpk) adaptively issues key
queries (key, k) where k ∈ K and
receives skk ← KeyDer (msk, k).

3. A1 outputs a message m∗ ∈M and
a state st.

4. Let c← Enc(mpk,m∗), send
(mpk, c, st) to A2.

5. A2 adaptively issues queries as did
A1 in step 2.

6. Finally A2 outputs α.

ExpidealFE,A(λ)

1. (mpk∗,msk∗)← Setup∗(1λ).

2. A1(1λ,mpk∗) adaptively issues queries (key, k)
with k ∈ K and receives:
skk ← KeyDer∗0(msk∗, k).
Let {k1, . . . , kqkey} denote the queried keys.

3. A1 outputs a message m∗ ∈M and a state st.
Let Lideal := {(ki, F (m∗, ki), skki)}

qkey
i=1.

4. Let (c∗, st′) ← Enc∗(mpk∗,msk∗, Lideal, 1|m
∗|).

Send (mpk∗, c∗, st′) to A2.

5. A2 adaptively issues queries (key, k) where k ∈
K and receives skk ← KeyDer∗1(msk∗, st′, k).

6. Finally A2 outputs α.

Definition 4.34. An FE scheme FE for functionality F over a message space M, and a key
space K is simulation-secure against adaptive chosen plaintext attacks (sim-fe-cpa) if there
exists a PPT simulator S, such that for any PPT adversary A, it holds that:

Advsim-fe-cpa
FE,A (λ) def=

∣∣∣Pr
[
ExpidealFE,A(λ) = 1

]
− Pr

[
ExprealFE,A(λ) = 1

]∣∣∣ = negl(λ).

Attaining Simulation Based Security

In the following we consider the IPFE construction of Fig. 4.1 which results from a (R, a, f, nf ,
`,M,K, Υ̂,Υ, δL, δvs)-pip-safe projective hash function H. Generalising techniques due to
[Wee17,ALMT20a], we here give intuition for additional properties required of the underlying
PHF which are sufficient to render the IPFE construction of Fig. 4.1 sim-fe-cpa-secure.

We first extend the notion of invalid ciphertexts for PKE (cf. Definition 3.21), to IPFE as
follows.

150

CHAPTER 4. FUNCTIONAL ENCRYPTION FOR COMPUTING INNER PRODUCTS

Notation 4.35. For a vector of hashing keys hk, we call an invalid ciphertext encrypting
m ∈M a ciphertext ct := (c0, c) where c0 ∈ X\L, and c := hash(hk, c0) · fm. Note that for
any k ∈ K, decrypting ct with skk ← kT · hk yields 〈m,k〉 ∈ R.

We follow the lines of [Wee17,ALMT20a] and assume A makes `−1 key derivation queries
for linearly independent vectors {ki}i∈[`−1]. Recall that we must exhibit a PPT simulator S,
simulating the view of adversary A without seeing the challenge message m∗, but given access
to pairs 〈m∗,ki〉 where the ki ∈ K are the vectors queried by A. Precisely S must implement
the following algorithms:

1. Setup∗: Here S sets up master keys (mpk∗,msk∗), where the distribution followed by
mpk∗ must be indistinguishable to that output by the real Setup algorithm. To this end
S simply samples a vector of hashing keys hk ∈ K`

hk, running the hashkg algorithm `
times, computes the associated vector of public projection keys hp ← projkg(hk), and
sets mpk∗ := hp and msk∗ := hk.

2. KeyDer∗0: Here S must answer ‘pre-challenge’ key derivation queries (i.e. queries that are
made before A gets the (simulated) challenge ciphertext). For each key derivation query
k, S sends kT · hk to A. Let Kpre denote the set of vectors k ∈ K queried by A during
this phase.

3. Enc∗: Here S must output a simulated challenge ciphertext. Since S does not know the
challenge message m∗ ∈ M, it encrypts a dummy message m̄ instead. This m̄ must
be consistent with m∗ from A’s view. This means that ∀k ∈ Kpre, it must hold that
〈m∗,k〉 = 〈m̄,k〉 ∈ R. S computes an invalid ciphertext for m̄, i.e., for (x,w) ∈ R and
b ∈ (Z/nfZ)∗, y ← Υb, the simulated challenge ciphertext is c̄t := (x · y, hash(hk, x · y) ·
fm̄). Note that it is important the ciphertext be invalid, since, as we shall see later, such
a ciphertext can be seen as an encryption of any m′ ∈ M, for another hashing key hk′

(fixed given c̄t and m′), and satisfying projkg(hk) = projkg(hk′) .

4. KeyDer∗1: Finally for any ‘post-challenge’ key derivation query k, and given the cor-
responding value z∗k := 〈m∗,k〉, S must send a decryption key sk′k to A satisfying
Dec(mpk∗, sk′k, c̄t) = z∗k. To this end, as in [ALMT20a], one embeds the value z∗k into
the functional decryption key sk′k, so that, denoting z̄k := 〈m̄,k〉, the difference z∗k − z̄k
serves as a shift on decryption. Precisely, recall that k ∈ R`, hk ∈ (R`)a, and z∗k, z̄k ∈ R,
then for some hkS ∈ Khk ⊂ Ra, S returns the following decryption key to A:

sk′k := kT · hk− (b−1 mod nf)(z∗k − z̄k) · hkS in Ra.

We call hkS ∈ Khk the shift key, which must satisfy the following properties:

(a) hash(hkS,Υ) = f and

(b) ∀u ∈ L, hash(hkS, u) = hash(0, u).

Such a choice of sk′k ensures that Dec(mpk∗, sk′k, c̄t) = z∗k as required. Notice that adding
this shift is implicitly shifting the master secret key hk by (b−1 mod nf)(m∗− m̄) · hkTS ;
we denote hk′ := hk− (b−1 mod nf)

(
(m∗ − m̄) · hkTS

)
∈ (R`)a.

We now explain intuitively why A’s view in this simulation is indistinguishable from its view
in a real execution. First observe that since the shift is a multiple of hkS, from property (b)
of hkS it holds that the public key hp is consistent with hk′ from A’s view, since for any
(u,w ∈ R), hash(hk, u) = hash(hk′, u) = hash(hp, u, w). Moreover, we have:

c̄t = (x · y, projhash(hp, x, w)hash(hk, y) · fm̄)

151

CHAPTER 4. FUNCTIONAL ENCRYPTION FOR COMPUTING INNER PRODUCTS

= (x · y, hash(hk′, x)hash(hk′ + (b−1 mod nf)(m∗ − m̄) · hkTS ,Υb) · fm̄)

= (x · y, hash(hk′, x)hash(hk′,Υb) · hash(hkS,Υ)(m∗−m̄) · fm̄)

= (x · y, hash(hk′, x)hash(hk′, y) · fm∗) = (x · y, hash(hk′, x · y) · fm∗),

Thus an invalid ciphertext encrypting m∗ for the shifted key hk′ is also an invalid ciphertext
encrypting m̄ for hk. Moreover S’s answers to A’s key derivation queries are exactly those
one would obtain running the key derivation algorithm with hk′. So A’s view is exactly that
of a real execution, where the sampled master secret key is hk′ (modulo the fact we are using
invalid ciphertexts in the simulated environment, but this change is unnoticeable under the
δL-hardness of the subset membership problem). Finally using the smoothness of H allows
to conclude that swapping hk for hk′ is indistinguishable from A’s view. Thus the real and
simulated executions are indistinguishable to A.

Running Example 1 – Shift key for Hddh

For Hddh, L = 〈(g0, g1)〉, where g0 and g1 are randomly chosen elements of G. The generator
of Hhsm-cl can choose g0, g1 such that it knows w := logg0(g1). The shift key hkS := (−1 mod
q, w−1 mod q) satisfies (a) and (b). Consequently with this hkS one can prove that the IPFE
scheme resulting from Hddh (via the construction of Fig. 4.1) is sim-fe-cpa-secure.

We note that the fact this construction is secure in the simulation based model is not
new. Indeed, as noted previously, the IPFE scheme resulting from Hddh via the construction of
Fig. 4.1 is exactly the DDH based scheme of Agrawal et al. [ALS16], they proved their scheme
was ind-fe-cpa-secure. Shortly after, Abdalla et al. [AGRW17] proved the same scheme was
simulation secure against selective adversaries (which commit to the challenge messages prior
to seeing the master public key). In [Wee17], Wee demonstrated that (still this same) scheme
is secure in the simulation based model against semi-adaptive adversaries (the adversary is
restricted to making all its key queries after it sees the challenge ciphertext), while the generic
results of O’Neill [O’N10] tell us that since the scheme was proven ind-fe-cpa-secure, it is also
sim-fe-cpa-secure in the restricted model where the adversary makes all its’ key requests before
seeing the challenge ciphertext. Finally, Agrawal et al. recently proved that the scheme is in
fact sim-fe-cpa-secure [ALMT20b]. Hence, though we do not claim to have proven anything
new about the security of this well studied scheme, we generalise their approach.

Running Examples 2 and 3 – HSM-CL and DDH-f

The computation of hkS is not straight forward for any PHF, and in particular, for our running
examples resulting from the CL framework, where the order of group Ĝ is unknown, hkS cannot
be computed efficiently. To see this consider our running example from HSM-CL, one would
need: (a) hkS = 1 mod q and (b) hkS = 0 mod s. However s is unknown, even to the group
generator, and so finding a non zero multiple of s it not feasible in practice. We can thus not
use the above proof technique to prove sim-fe-cpa-security of an IPFE scheme resulting from
Hhsm-cl.

Walking Example – Shift key for Hdcr

Despite the similarities between Hdcr and Hhsm-cl, in Hdcr, which is the PHF arising from DCR,
there is a trapdoor allowing to compute a shift key. Precisely, using the notations of Fig. 2.1,
for Hdcr we have L := {rN mod N2 : r ←↩ Z/N2Z}, X := Z/N2Z, Υ := g = (N + 1), and
f := (1+N); while, for a hashing key hk ∈ Khk = Z, and for x ∈ Z/N2Z, the hashing algorithm

152

CHAPTER 4. FUNCTIONAL ENCRYPTION FOR COMPUTING INNER PRODUCTS

computes hash(hk, x) = xhk ∈ Z/N2Z. Observe that the factorisation of N = PQ, where P
and Q are prime is used for the system’s set up, and so must be known by the generator of
Hdcr. Consequently this generator can compute Λ ← (P − 1)(Q − 1) and compute the shift
key satisfying hkS = 1 mod N and hkS = 0 mod Λ. For any x ∈ L, xΛ = x0 = 1, so (b) holds,
since hash(hkS, x) = hash(0, x). Furthermore, since (1 + N) is of order N in Z/N2Z, (a) also
holds since hash(hkS,Υ) = hash(hkS, (1 +N)) = (1 +N)hkS = (1 +N) = f .

153

CHAPTER 4. FUNCTIONAL ENCRYPTION FOR COMPUTING INNER PRODUCTS

154

Chapter 5

Distributing EC-DSA

In Chapter 4, we saw how one can use projective hash functions to generically build inner prod-
uct functional encryption schemes without sacrificing efficiency. We also saw that instantiating
our constructions from assumptions in the CL framework and from the decisional composite
residuosity assumption yields some of the most efficient such schemes to date. In particular,
due in part to the fact that, in instantiations from the CL framework, one sets the message
space to be of prime order q, where q can be chosen according to ones needs, we are able to
substantially reduce the size of the keys and ciphertexts of our schemes.

In this chapter, we shall see another application of our projective hash functions: that of
devising new threshold signature protocols for the standardised elliptic curve digital signature
algorithm (EC-DSA). These protocols will also use the zero-knowledge proofs and arguments
developed in Sections 3.6 and 3.7. We shall see that in this context, instantiations from the
CL framework yield considerable efficiency gains compared to instantiations from DCR (or
somewhat equivalently from the Paillier cryptosystem), thanks to the aforementioned for the
choice of q.

State of the Art

Threshold signatures. A threshold signature scheme allows n mutually mistrusting users
to share the capability of signing documents under a common public key. The threshold t < n
typically indicates that any subset of at least t + 1 users can collaborate in order to issue a
valid signature. On the other hand, no coalition of t or less users can do so. In fact, even if an
adversary corrupts up to t users, no information should leak on the underlying secret signing
key. This latter property is very useful in practice as it significantly reduces the loss induced by
a security break in. This explains why the study of threshold signatures (and more generally of
threshold cryptography [Des88,DF90,GJKR96b,SG98,Sho00,Boy86,CH89,MR04a]) attracted
significant interest from the early 1990s to the early 2000s.

Over the last few years, threshold signatures and, in particular, threshold EC-DSA sig-
natures have received renewed attention. This mainly comes from the fact that EC-DSA is
the signature scheme adopted in Bitcoin and other cryptocurrencies to validate transactions.
Hence a secure, flexible and efficient protocol for threshold EC-DSA signatures would be very
effective against the theft of Bitcoins: instead of storing a signing key in one single location
one could share it among several servers so that none of them knows it in full and a quorum
is needed to produce new signatures. This also means that an attacker must break into more
than t servers to learn any meaningful information.

Of course, in order for a secure solution to be of any use in the cryptocurrency world,
efficiency and flexibility are of fundamental importance. Here flexibility mainly refers to the
possibility of arbitrarily setting the threshold. Efficiency, on the other hand, takes into account
both the computational cost and the bandwidth consumption induced by the protocol.

155

CHAPTER 5. DISTRIBUTING EC-DSA

Distributing EC-DSA. While for other signature schemes fast threshold variants are known
(e.g. RSA signing [GJKR96a] and Schnorr signatures [Sch91, SS01]) constructing efficient
threshold EC-DSA protocols has proved to be much harder. This is essentially due to a non-
linear operation performed over the (secret) randomness used to produce EC-DSA signatures.
Consequently, before the advent of cryptocurrencies, known solutions to the problem of devis-
ing threshold EC-DSA protocols fell short either in terms of flexibility or in terms of efficiency
(or both). The state of the art was the work of Gennaro et al. [GJKR96a] where to imple-
ment a threshold of t servers one needed to share the key among a total of at least n = 2t+ 1
servers, thus making sharings where all parties are required to participate to the signing process
impossible.

The first protocol to overcome this limitation was that of Mackenzie and Reiter [MR01].
Their work focuses on the two-party case (i.e. where t = 1 and n = 2), which is non trivial
since in such a setting there is no honest majority of parties. In their protocol, parties use
Paillier’s linearly homomorphic encryption scheme to combine their respective shares and
complete the signature while keeping their inputs secret. It turns out that for their protocol to
be secure against malicious adversaries, proving that each party followed the protocol correctly
is not simple; they addressed this via expensive zero knowledge proofs. Consequenlty, if one
whishes to garantee security against malicious adversaries, their protocol lacks the efficiency
required to be used in practice. More recently Lindell [Lin17a] provided a much simpler and
more efficient protocol. While his protocol also relies on Paillier’s cryptosystem, he succeeds
in removing almost all expensive zero knowledge proofs from the protocol, while proving that
security holds in the simulation based model against malicious adversaries. Lindell’s crucial
observation is that, in a two party EC-DSA signing protocol, dishonest parties can create very
little trouble since the verification algorithm of any signature scheme can be publicly evaluated.
Hence a party can tell if the other cheated by running the verification algorithm on the jointly
produced signature.

In a different style, Doerner et al. [DKLs18] provide a 2 out of n protocol requiring no
additional assumptions than the security of centralised EC-DSA. They do not rely on linearly
homomorphic encryption but rather on oblivious transfer for parties to combine their shares.
Their protocol is fast, though its bandwidth consumption is higher than [Lin17a] due to this
use of oblivious transfer.

Regarding the full threshold setting, i.e. protocols allowing to consider any threshold t
such that n > t + 1, the work of Gennaro et al. [GGN16], whose efficiency was subsequently
improved in [BGG17], shows how to generalise the Mackenzie-Reiter paradigm to any number
of parties and with a full threshold. However implementing their protocols in practice requires
some trusted set up, as their key generation requires multi-party Paillier key generation, and
although two-party Paillier key generation is feasible [FLOP18], there is currently no practical
multi-party variant.

More recently, building upon the ideas of [GGN16], Lindell et al. [LN18] propose a full
threshold protocol which they prove secure under simulation-based definitions, for which they
propose an implementation using Paillier’s encryption scheme, and another relying on oblivious
transfer. Concurrently, Gennaro et al. [GG18] put forth a protocol which does not require a
trusted set up, and relies on Paillier’s cryptosystem for parties to jointly compute signatures.
Conversely to [LN18] they prove security in the game based model, reducing security to that
of centralised EC-DSA.

Doerner et al., in [DKLs19], extend their protocol of [DKLs18] to the full threshold set-
ting, their resulting protocol is proven secure in the universal composability paradigm (cf.
Section 2.3.2). They obtain fast signature protocols, though again, the use of oblivious trans-

156

CHAPTER 5. DISTRIBUTING EC-DSA

fer incurs quite a high communication cost.

Our contributions

Generic solution for two-party EC-DSA. We start off considering the two party case,
building upon the work of [Lin17a], and the observation that in Lindell’s protocol, the use of
Paillier’s encryption scheme entails various complications.

First of all, a bandwidth overhead is incurred due to the difference between the order of
the Paillier plaintext space, and that in which EC-DSA signatures are computed. Indeed since
the Paillier plaintexts space is Z/NZ whereas EC-DSA signatures live in Z/qZ (q is prime),
in order to avoid inconsistencies one needs to make sure N is taken large enough so that no
wraparounds occur during the whole signature generation process. This also means that, when
sending encrypted values, parties need to prove, via range proofs, that the encrypted plaintext
is in the right range (i.e. sufficiently small).

A more subtle issue arises from the use of Paillier’s encryption in the security proof. Indeed,
to argue indistinguishability of an adversary’s view in real and simulated executions, it seems
necessary to set up a reduction to the indistinguishability of Paillier’s cryptosystem. However
if one knows the secret decryption key for the Paillier cryptosystem (i.e. the factorisation of
N), then the underlying problem (DCR) is easy. This means one must design a proof technique
that manages to successfully use Paillier’s scheme without knowing the corresponding secret
key sk. Problems occur if a corrupted player sends a bad ciphertext to the simulator (i.e. one
that should not yield a valid signature), since the simulator can not use sk to decrypt and
recognise that the ciphertext is bad.

Lindell [Lin17a] proposes two alternative proofs to overcome this. The first, in the game-
based model, avoids the problem by allowing the simulator to abort with a probability that
depends on the number of issued signatures qs. This results in a proof of security that is not
tight as the reduction looses a factor qs. The second proof is simulation based, avoids the
aborts, but requires the introduction of a new interactive non standard assumption regarding
Paillier’s encryption (detailed in Appendix C).

In order to overcome these issues, we observe that – as noted in Section 3.4.1 – for public
key encryption schemes based on projective hash functions, the indistinguishability of cipher-
texts is not compromised by the challenger knowing the decryption key hk. This key does
not help break the subgroup membership problem underlying the scheme. Another interesting
property (which we also use to prove security of our full threshold protocol) is that if one
only knows the projection key hp, given an invalid ciphertext for a PHF based PKE (cf. Def-
inition 3.21), this ciphertext could in fact decrypt to any message, and it is only given this
message that one fixes the secret hashing key hk. This is particularly useful when simulating
the view of an adversary, since one can replace a ciphertext decrypting to a given value with a
ciphertext decrypting to any garbage value. We note that, for our two party protocol, subtle
issues arise due to the fact the adversary has auxiliary information on the encrypted value.
This leads us to introducing a new (non interactive) assumption, the double encoding assump-
tion, whose hardness we advocate for PHFs arising from HSM-CL and DCR (cf. Section 5.2.1).
Thus relying on linearly homomorphic schemes arising from projective hash functions, instead
of Paillier, we provide a generic construction for two-party EC-DSA signatures from projec-
tive hash functions for which security does not degrade with the number of signature queries
performed by the adversary; and whose simulation based security does not rely on interactive
assumptions. Furthermore, observe that if we instantiate our protocol using either Hhsm-cl of
running example 2, or Hddh-f of running example 3 (cf. Chapter 3), we can choose the message
space of the encryption scheme to be of the same prime order q as that used to compute

157

CHAPTER 5. DISTRIBUTING EC-DSA

EC-DSA signatures. This avoids the need for range proofs and thereby significantly reduces
bandwidth consumption compared to other two party EC-DSA protocols. We favour an in-
stantiation from Hhsm-cl as resulting ciphertexts are smaller, and it allows to sample shorter
keys (cf. Section 3.5.3), which improves both communication and computation complexity. We
implement this instantiation in the Pari C Library [PAR20], and thereby obtain the first two
party EC-DSA signing protocol which is practical (both in terms of computational efficiency
and in terms of bandwidth consumption), does not require interactive assumptions and allows
for a tight security reduction.

Bandwidth efficient full threshold EC-DSA. We next focus the full threshold dishonest
majority setting. We revisit the [GG18] protocol which, as in Lindell’s protocol for the two-
party case, relies on Paillier’s cryptosystem, thereby inducing the need for the order of the
message space N to be much larger than q, and the need for range proofs so as to prevent
malicious behaviour.

Building upon the ideas developed in our two party protocol we propose a new threshold
EC-DSA variant of the [GG18] protocol. As our main goal is to improve efficiency, and in
particular bandwidth consumption, we directly consider a protocol arising from the Πhsm-cl

encryption scheme of Fig. 3.5.
Our protocol eliminates all range proofs, while retaining comparable overall computational

efficiency. Security does not degrade with the number of signatures queried by the adversary,
and relies on the assumptions and tools introduced in Chapter 3. Precisely, as parties use
the linearly homomorphic properties of Πhsm-cl to jointly compute signatures, one must ensure
no information leaks from this use of the encryption scheme. We thus require parties prove
their ciphertexts are ‘well formed’ using the efficient zero-knowledge arguments of knowledge
of Section 3.7. So as to reduce to the hardness of the strong root problem (cf. Definition 3.8) in
these arguments of knowledge, we introduce a slight modification to the HSM-CL assumption.
We then devise a setup protocol allowing parties to interactively set up the public parameters
of the (accordingly modified) Πhsm-cl encryption scheme.

We compare the efficiency of our protocol to those of Gennaro et al. [GG18] and of Lindell
et al. [LN18], these are the best performing pre-existing protocols using similar construction
techniques which achieve the same functionality. For all considered security levels our signing
protocol reduces the bandwidth consumption by factors varying between 4.4 and 9, while key
generation is consistently two times less expensive. In terms of timings, though for standard
levels of security our signing protocol is up to four times slower than that of [GG18], for higher
levels of security the trend is inverted.

Related publications and submissions. Most of the work in this chapter can be found in:

• [CCL+19] For the generic two party EC-DSA protocol of Section 5.2.

• [CCL+20] For the full threshold EC-DSA protocol of Section 5.3.

Road map

In Section 5.1 we formally define threshold signatures, the EC-DSA signature algorithm, and
the security models adopted for our constructions. In Section 5.2.2 we define the notion of an
EC-DSA-friendly projective hash function, from which, in Section 5.2.4, we provide a generic
construction for two party EC-DSA, which we prove secure in the simulation-based model in
Section 5.2.5. In Section 5.2.6 we provide an instantiation of this generic construction from the
HSM-CL based projective hash function Hhsm-cl (cf. running example 2 in Chapters 3 and 4).

158

CHAPTER 5. DISTRIBUTING EC-DSA

Finally in Section 5.2.7 we compare implementations in the Pari C Library ([PAR20]) of our
protocol to that of Lindell [Lin17a].

Next we consider the full threshold setting, in Section 5.3.1 we discuss the required public
parameters, and in Section 5.3.2 we explain how parties can interactively set these up. In
Section 5.3.3 we present our full-threshold EC-DSA signing protocol, whose security is proven
in Section 5.3.4. Finally in Section 5.3.5 we compare the efficiency of this protocol to that of
pre-existing protocols.

Notation 5.1. Throughout this chapter we consider a PPT algorithm group generator GenG
which on input 1λ returns a description (G, P, q) of a group of EC points (G,+) of order q,
generated by P . We further assume that the DL problem is hard for GenG.

5.1 Threshold Signature Algorithms
In this section, we present generalities required to understand this chapter. Precisely we define
threshold signatures, the EC-DSA signing algorithm and the security models considered in our
work.

5.1.1 Threshold Signature Scheme

Definition 5.2 ((t, n)-threshold signature scheme). Let λ be a positive integer. For a threshold
t and a number of parties n > t, a threshold signature protocol T-Σ for a signature scheme
Σ := (Setup,KeyGen, Sign,Verif) consists of the following interactive protocols:

ISetup〈1λ〉 → 〈pp〉 is a (possibly centralised) setup algorithm, which on input 1λ runs pp ←
Setup(1λ), and outputs public parameters pp for the signature scheme.

IKeyGen〈pp〉 → 〈(sk1, pk); . . . ; (skn, pk)〉 s.t. KeyGen(pp) → (sk, pk) where the values sk1, . . . ,
skn constitute a (t, n) threshold secret sharing of the signing key sk.

ISign〈(sk1,m); . . . ; (skn,m)〉 → 〈σ1; . . . ;σn〉 or 〈⊥〉 where ⊥ is the error output, signifying the
parties may abort the protocol; if all parties play symmetric roles in the protocol, for
i ∈ {1, . . . , n}, σi = σ, else σi ∈ {ok, σ}, where ok signifies a party learns the protocol
terminates successfully, and Sign(sk,m)→ σ.

The verification algorithm is non interactive and identical to that of Σ.
Correctness requires that for any λ ∈ N, any ISetup〈1λ; . . . ; 1λ〉 → 〈pp〉, for all IKeyGen〈pp〉

→ 〈(sk1, pk); . . . ; (skn, pk)〉, all messages m, and any subset I = {i1, . . . , ik}, with k > t and
i1, . . . , ik ∈ {1, . . . , n}; if ISign〈(ski1 ,m); . . . ; (skik ,m)〉 → 〈σ1; . . . ;σk〉 it holds that for j ∈
{1, . . . , k} if σj 6= ok then then Verif(pp, vk,m, σj) = 1.

5.1.2 The Elliptic Curve Digital Signature Algorithm (EC-DSA)

We here present the specific signing protocol which is considered in this chapter, both in its
centralised and distributed form, before positioning our work relatively to some of the many
great achievements in the domain of threshold EC-DSA.

Centralised EC-DSA

EC-DSA is the elliptic curve analogue of the Digital Signature Algoritm (DSA). It was put
forth by Vanstone [Van92] and accepted as ISO, ANSI, IEEE and FIPS standards. Let λ be
a positive integer, and (G, P, q)← GenG(1λ). The EC-DSA scheme works on input (G, P, q);

159

CHAPTER 5. DISTRIBUTING EC-DSA

uses a collision resistant hash function such as SHA-2 (with the output converted to an integer);
and consists of the following algorithms.

KeyGen(G, q, P)→ (x,Q) where x ←↩ Z/qZ is the secret signing key and Q ← xP is the
verification key.

Sign(x,m)→ (r, s) where r and s are computed as follows:

1. Compute m′: the µ leftmost bits of SHA− 2(m).

2. Sample k ←↩ (Z/qZ)∗; compute R← kP ; denote R = (rx, ry) and let r ← rx mod q.
If r = 0 choose another k.

3. Compute s← k−1(m′ + r · x) mod q.

Verif(Q,m, (r, s))→ {0, 1} indicating whether or not the signature is accepted.

Difficulty of distributing EC-DSA. Compared to other digital signature schemes (e.g.
RSA signing [GJKR96a] and Schnorr signatures [Sch91,SS01]), constructing efficient threshold
protocols for the digital signature algorithm (DSA), and its elliptic curve variant EC-DSA,
has proved to be quite challenging. We note that, though we focus on EC-DSA in this chapter,
all of our results and those of prior work we cite applies to both the traditional DSA and
EC-DSA. The main reason for this difficulty in sharing EC-DSA seems to result from the
non-linear operation performed when inverting the (secret) randomness k to produce s.

Indeed, the natural approach to make the above algorithm distributed would be to share
x additively among the participants and then start a multiparty computation protocol to
produce the signature. In the two party case, this means that players start with shares x1 and
x2 such that Q = (x1 +x2)P . The players can then proceed by generating random shares k1, k2

such that R = (k1 + k2)P . At this point, however, it is not clear how to compute, efficiently,
shares k′1, k

′
2 such that k′1 + k′2 = k′−1 mod q.

On the widespread use of EC-DSA. One may wonder why EC-DSA has seen such
widespread adoption, when other digital signature schemes lend themselves much better to
threshold variants.

First observe that, compared to other signature protocols, for an equivalent level of security
EC-DSA allows to use much smaller keys. As mentioned in Section 2.4.1, this is due to the fact
that on elliptic curves, generic algorithms – which require Ω(

√
p) group operations – are the

best ones known for solving the DL problem, whereas in finite fields there exist algorithms with
sub-exponential complexity Lq[1/3]. Similarly there exist algorithms in LN [1/3] for factoring
integers. In this regard, a common RSA 3072-bit key provides a security level of 128 bits.
However, EC-DSA requires only 256-bit sized keys to provide the same security level. These
small keys and the speed of computing signatures explain why EC-DSA is particularly suitable
for performing digital signatures in devices with constrained-resource.

Admittedly this efficiency of EC-DSA is not so much down to the algorithm itself, but
rather to its use of elliptic curve cryptography. And indeed, the elliptic curve variant of the
Schnorr signature algorithm [Sch91] comes with all the efficiency benefits of EC-DSA (e.g. short
keys and fast signing time), is provably secure under standard assumptions [PS96], and does
not involve any non-linear operations over secret data, therefore efficient threshold variants of
the Schnorr signature algorithm are much easier to attain [SS01].

The reason Schnorr’s signature algorithm has not seen the widespread adoption EC-DSA
has is that, prior to publishing it, Schnorr filed multiple patents for his scheme which for
years prevented its direct use. Interestingly DSA (and its EC variant EC-DSA) was designed

160

CHAPTER 5. DISTRIBUTING EC-DSA

as a variant of Schnorr specifically to circumvent these patents, and was subsequently widely
deployed and standardised1.

On the provable security of EC-DSA. Due to their efficiency and standardisation, EC-
DSA signatures have seen widespread adoption over the internet (e.g. they are used for au-
thentication in the Transport Layer Security protocol); hence organisations chose EC-DSA
over other signatures as they considered sufficient its reputational security. However, though
proofs of security, under certain assumptions, were found for digital signature schemes similar
to DSA and EC-DSA, these proof techniques do not appear applicable to DSA and EC-DSA.

Currently proofs demonstrating that EC-DSA is existentially unforgeable under chosen
message attacks rely either on strong assumptions on the group in which signatures are com-
puted, or on the cryptographic hash function used to compute signatures. Indeed, Brown
[Bro00] demonstrated EC-DSA is existentially unforgeable under chosen message attacks if
one relies on the strong assumption that the underlying group is a generic group. Note that in
this model adversaries to EC-DSA specific to elliptic curve groups are not ruled out. On the
other hand Pointcheval and Vaudenay2 [PV96, BPVY00], demonstrated that – if one hashes
both the message m and the randomness r (i.e. m′ ← H(m|r)), and if the hash function H
behaves like a random oracle – then EC-DSA can be proven existentially unforgeable under
chosen message attacks. However, the protocol they prove secure is slightly different to the
real EC-DSA protocol, and such a reliance on the random oracle model is known to be con-
troversial. Thus even though no attack has ever been found against EC-DSA, in the standard
model the original EC-DSA scheme is not provably secure. For more details on the security of
EC-DSA, we refer the reader to [FKP16,FKP17].

We also note that implementing EC-DSA securely is by no means a trivial task. Curves
must be chosen appropriately, and implementation must include countermeasures against var-
ious attacks (e.g weak key generation, randomness reuse [BHH+14] and side channel attacks
[DGH+13,ANT+20,JSSS20]).

5.1.3 Security Notions for Threshold Signatures

We here define the security models adopted to prove security of our constructions of Sections 5.2
and 5.3.

Game Based Security

Following [GJKR96b], we present a game-based definition of security analogous to existen-
tial unforgeability under chosen message attacks, adapted to the threshold setting: threshold
unforgeability under chosen message attacks (tu-cma).

Definition 5.3 (Threshold signature unforgeability [GJKR96b]). Consider a (t, n)-threshold
signature scheme IS = (ISetup, IKeyGen, ISign,Verif), and a PPT algorithm A, having corrupted
at most t players, and which is given the view of the protocols IKeyGen and ISign on input
messages of its choice (chosen adaptively) as well as signatures on those messages. Let M be
the set of queried messages. The scheme IS is threshold unforgeable under chosen message
attacks (tu-cma) if for any such A, the probability Advtu-cmaIS,A that A can produce a signature
on a message m /∈M is a negligible function of λ.
1The NIST proposed DSA for use in their Digital Signature Standard in 1991, and adopted it as FIPS 186

in 1994.
2Their work is on the DSA signature scheme, however results extend to elliptic curve variant.

161

CHAPTER 5. DISTRIBUTING EC-DSA

Simulation Based Security and Ideal Functionalities

For our proof in the simulation based model (cf. Section 2.3.2), we consider static adversaries,
that choose which parties are corrupted before the protocol begins.

We will use ideal functionalities for commitments, zero-knowledge proofs of knowledge
(ZKPoK) and commitments to non interactive zero-knowledge (NIZK) proofs of knowledge
between two parties P1 and P2. We give the intuition behind these ideal functionalities with
the example of ZKPoK. We consider the case of a prover Pi with i ∈ {1, 2} who wants to
prove the knowledge of a witness w for an element x which ensures that (x,w) satisfy the
relation R, i.e. (x,w) ∈ R. In an ideal world we can imagine an honest and trustful third
party, which can communicate with both Pi and P3−i. In this ideal scenario, Pi could give
(x,w) to this trusted party, the latter would then check if (x,w) ∈ R and tell P3−i if this is
true or false. In the real world we do not have such trusted parties and must substitute them
with a cryptographic protocol between P1 and P2. Roughly speaking, the Ideal/Real paradigm
requires that whatever information an adversary A (corrupting either P1 or P2) could recover
in the real world, it can also recover in the ideal world. The trusted third party can be viewed
as the ideal functionality and we denote it by F. If some protocol satisfies the above property
regarding this functionality, we call it secure.

Formally, we denote F〈x1;x2〉 → 〈y1; y2〉 the joint execution of the parties via the function-
ality F, with respective inputs xi, and respective private outputs at the end of the execution
yi. Each transmitted message is labelled with a session identifier sid, which identifies an iter-
ation of the functionality. The ideal ZKPoK functionality [HL10, Section 6.5.3], denoted Fzk,
is defined for a relation R by Fzk〈(x,w); ∅〉 → 〈∅; (x,R(x,w))〉, where ∅ is the empty output,
signifying that the first party receives no output (cf. Fig. 5.1).

• Upon receiving (prove, sid, x, w) from a party Pi (for i ∈ {1, 2}): if (x,w) /∈ R or sid
has been previously used then ignore the message. Otherwise, send (proof, sid, x) to
party P3−i

Figure 5.1: The FRzk functionality

The ideal commitment functionality, denoted Fcom, is depicted in Fig. 5.2. We also use
an ideal functionality FRcom-zk for commitments to NIZK proofs for a relation R (cf. Fig. 5.3).
Essentially, this is a commitment functionality, where the committed value is a NIZK proof.

• Upon receiving (commit, sid, x) from party Pi (for i ∈ {1, 2}), record (sid, i, x) and
send (receipt, sid) to party P3−i. If some (commit, sid, ∗) is already stored, then ignore
the message.

• Upon receiving (decommit, sid) from party Pi , if (sid, i, x) is recorded then send
(decommit, sid, x) to party P3−i.

Figure 5.2: The Fcom functionality

The ideal functionality for two-party EC-DSA. The ideal functionality Fec-dsa (cf.
Fig. 5.4) consists of two functions: a key generation function, called once, and a signing func-
tion, called an arbitrary number of times with the generated keys.

162

CHAPTER 5. DISTRIBUTING EC-DSA

• Upon receiving (com-prove, sid, x, w) from a party Pi (for i ∈ {1, 2}): if (x,w) /∈ R or
sid has been previously used then ignore the message. Otherwise, store (sid, i, x) and
send (proof-receipt, sid) to P3−i.

• Upon receiving (decom-proof, sid) from a party Pi (for i ∈ {1, 2}): if (sid, i, x) has been
stored then send (decom-proof, sid, x) to P3−i

Figure 5.3: The FRcom-zk functionality

Consider an Elliptic-curve group G of order q with generator a point P , then:
• Upon receiving KeyGen(G, P, q) from both P1 and P2:

1. Generate an EC-DSA key pair (Q, x), where x ←↩ (Z/qZ)∗ is chosen randomly
and Q is computed as Q← x · P .

2. Choose a hash function Hq : {0, 1}∗ → {0, 1}blog |q|c, and store (G, P, q,Hq, x).

3. Send Q (and Hq) to both P1 and P2.

4. Ignore future calls to KeyGen.

• Upon receiving Sign(sid,m) from both P1 and P2, where keys have already been gener-
ated from a call to Keygen and sid has not been previously used, compute an EC-DSA
signature (r, s) on m, and send it to P1 and P2.

Figure 5.4: The Fec-dsa functionality

5.2 Two Party EC-DSA from PHFs
At Crypto 2017, Lindell [Lin17a] provided an elegant solution for two party EC-DSA. He adopts
a similar strategy to Mackenzie et al. in [MR01], in that parties use the homomorphic properties
of Paillier’s cryptosystem to combine their secret shares. Using the simple observation that
one can use the EC-DSA verification algorithm to check whether a party has cheated in the
signature generation, he eliminates almost all the zero-knowledge proofs which were required in
Mackenzie et al.’s protocol to handle malicious adversaries. In a little more detail, assume that
in a preliminary phase party P2 receives both P1’s public encryption key and an encryption
Enc(x1) of P1’s share of the secret signing key. Using the homomorphic properties of the
encryption scheme, P2 can now compute a ciphertext decrypting to k−1

2 (H(m) + xr), which it
sends to P1; when P1 decrypts, it multiplies the result by k−1

1 in order to obtain s.
The beauty here is that essentially, all a malicious P1 can do is cheat in the generation of

R ← k1k2P . However this operation is the well established Diffie-Hellman protocol for which
very efficient and robust protocols exist. On the other hand, if P2 is corrupted all it can do
(except again cheat in the generation of R) is create a bad ciphertext as her final response for
P1. However, while P2 can certainly try that, this would be easy to detect by simply checking
the validity of the resulting signature.

Turning this nice intuition into a formal proof induces some caveats though, and, as noted
in the chapter introduction, all the difficulties Lindell encounters in his proof are due to the
use of Paillier’s cryptosystem. In particular, regarding efficiency, this choice induces a number
of range proofs in the overall protocol. In terms of security, recall that the reduction can not

163

CHAPTER 5. DISTRIBUTING EC-DSA

use the Paillier secret key while relying on the indistinguishability of the encryption scheme.
This results in a security proof which, in the game based model degrades with the number of
signatures the adversary is allowed to query, while in the simulation based model requires the
reliance on a non standard interactive assumption.

In this section we present our generic two-party EC-DSA protocol from PHFs, which can
be seen as a generalisation of Lindell’s scheme, and allows to overcome the aforementioned
issues due to the use of Paillier’s encryption scheme. In its generic form, the protocol is not
efficient enough for practical applications as it employs a general purpose zero-knowledge proof
as underlying building block. Still, beyond providing a clean, general framework which is of
interest in its own right, it allows us to abstract away the properties we want to realise. In
particular, our protocol allows for a proof of security that is both tight and does not require
interactive assumptions when proving simulation security. Indeed, in PKE schemes based on
PHFs, indistinguishability of ciphertexts is not compromised by the challenger knowing the
scheme’s secret keys as it relies on a computational assumption and a statistical argument.

The correctness of our protocol follows from homomorphic properties that we require of
the underlying PHF; furthermore, as we require the PHF be homomorphically-extended (Def-
inition 3.12), the homomorphic properties of the PHF hold for any public key sampled from
an efficiently recognisable set, thus no zero-knowledge proofs are required for the public key.

Towards efficient solutions, we show in Section 5.2.6 how to instantiate our generic con-
struction using the HSM-CL based PHF of running example 2. Concretely, the main benefit
of using the CL framework here, is that – as detailed in Section 3.5 – it allows to build linearly
homomorphic PKE schemes where the plaintext space is Z/qZ for arbitrarily large q. This also
means that if one uses the very same q underlying the EC-DSA signature, one gets a concrete
instantiation of our general protocol which naturally avoids all the inefficiencies resulting from
N and q being different.

As final contribution, we propose a C implementation of our protocol3. Our results show
that our improved security guarantees come almost at no additional cost. Indeed, while our
scheme is slightly slower (by a factor 1.5 for key generation and 3.5 for signing) for 128-bit
security level, we are actually better for larger parameters: for 256-bit security, we are more
efficient both in terms of key generation and signing time (by respective factors of 4.2 and
1.3). In terms of bandwidth consumption, we fare better for all considered levels of security.
We refer to Section 5.2.7 for precise implementation considerations and timings.

5.2.1 The Double Encoding Problem

For our security proof to go through we need a notion which deals with information leaked
by the fact an interactive signing protocol concludes successfully or aborts, as this event may
leak one bit of information to the adversary. We must ensure that a corrupted player can not
devise ciphertexts allowing it to distinguish real and ideal executions, by causing an execution
to conclude successfully in one case, while it would abort in the other. To this end, we require
that – given a one way function (OWF) of x ∈ Z/qZ (in our protocol this is the elliptic curve
point Q := xP) – no PT adversary can produce two invalid encryptions of x.

Though the following assumption may seem quite ad-hoc, in the following paragraph we
motivate that intuitively it seems to reduce to the hardness of inverting the one way function.

Definition 5.4 (Double encoding assumption). Consider a positive integer λ ∈ N, and a
λ bit prime q. Further consider a collection of one way functions sampled via. an efficient
algorithm GenOW , such that for h ←↩ GenOW (1λ, q), h has input space Z/qZ (and arbitrary

3We also re-implemented Lindell’s protocol to ensure a fair comparison

164

CHAPTER 5. DISTRIBUTING EC-DSA

output space). Let GenSM be a subgroup membership problem generator, which takes as input
1λ, and a prime q, such that the resulting PHF H is (Υ̂,Υ, F)-decomposable, for F of prime
order q generated by f . Let A be an adversary for the double encoding (DE) problem, its
advantage is defined as:

AdvDEA (λ) def= Pr
[
u1, u2, u2u

−1
1 ∈ X̂ \ L̂ and hp = projkg(hk) :

SM ←↩ GenSM(1λ, q), h←↩ GenOW (1λ, q), x←↩ Z/qZ, y ← h(x),

(hp, (u1, hash(hk, u1)fx), (u2, hash(hk, u2)fx))←↩A(h,SM, y)
]
.

The DE problem is δde-hard for (GenSM, GenOW) if for all PPT A, AdvDEA (λ) 6 δde(λ). We
say the DE assumption holds for (GenSM, GenOW)(or the DE problem is hard for (GenSM,
GenOW)), if for any λ bit prime q the DE problem is δde-hard for (GenSM, GenOW) and
δde(λ) = negl(λ).

On the hardness of the double encoding problem. If the PHF and the OWF arise
from independent structures, it seems unlikely that one could solve the DE problem without
breaking the one wayness of h, and subsequently computing two invalid encodings of x. Even
if their structures are the same, it is unclear how one could do this. Of course if the OWF
were the mapping of x to fx, the DE problem would be easy. However in our applications we
specifically require that computing x from fx be easy, and consequently this mapping is not
one way. We back the intuition that this problem is hard by considering two PHF instantiations
which are relevant for our purposes. One from DCR (as detailed in [CS02]) and the other from
HSM-CL (i.e. Hhsm-cl of running example 2 in Chapter 3). Let us first recall the definition of
a subgroup decomposition problem.

Definition 5.5. Consider a finite abelian group G, and subgroups G1 and G2 such that G is
the direct product of G1 and G2. An algorithm A solves the subgroup decomposition (SD)
problem in (G,G1, G2) if, given input x←↩ G, A outputs y ∈ G1, z ∈ G2 such that x = yz.

Recall that (cf. Chapter 3) for the projective hash functions Hdcr and Hhsm-cl arising from
DCR and HSM-CL, one has Khk = Z, and for a hashing key hk ← hashkg(SM), and x ∈ X̂,
one has hash(hk, x) = xhk. This implies that the output space of the hashing algorithm is
Π = X̂ = L̂ × 〈Υ̂〉, and in fact Υ̂ = Υ = f and 〈Υ〉 = F . Furthermore computing x from fx

can be done efficiently. Moreover Hdcr and Hhsm-cl are homomorphic and key homomorphic.
In the following lemma we demonstrate that for both these PHFs, one can reduce the

problem of inverting the OWF to the hardness of solving the SD problem in (X̂, L̂, F), and
the hardness of solving the DE problem.

Lemma 5.6. Consider PHFs arising from DCR and HSM-CL. Further consider a one way
function h. Suppose there exists a PPT algorithm B1 solving the DE problem with non negli-
gible probability; and a PPT algorithm B2 solving the SD problem with non negligible proba-
bility; then one can build a PPT algorithm breaking the one wayness of h with non negligible
probability.

Proof. Consider h ← GenOW (1λ, q), an adversary A attempting to invert h, and algorithms
B1 and B2 as described in the lemma. A gets as input a value y := h(x) for x ←↩ Z/qZ. A
runs SMGenSM(1λ, q), and sends (h,SM, y) to B1. With significant probability B1 outputs
(hp, (u1, u

hk
1 f

x), (u2, u
hk
2 f

x)) where u1, u2, u2u
−1
1 ∈ X̂ \ L̂ and hp = projkg(hk). There exist

unique values z1, z2 ∈ L̂ and b1, b2 ∈ Z/qZ such that u1 = z1f
b1 and u2 = z2f

b2 . Let
e1 := uhk1 f

x = zhk1 f b1hk+x and e2 := zhk2 f b2hk+x. A calls upon B2 four times, with inputs u1,

165

CHAPTER 5. DISTRIBUTING EC-DSA

u2, e1 and e2 respectively (these inputs can be re-randomised, but for simplicity we omit this
level of detail), to obtain z1, z2 ∈ L̂; f b1 , f b2 ∈ F ; zhk1 , zhk2 ∈ L̂; and f b1hk+x, f b2hk+x. Now A

can efficiently compute (b1 mod q), (b2 mod q), (b1hk+ x mod q) and (b2hk+ x mod q). Since
u2u

−1
1 ∈ X̂\L̂, b1 6= b2 mod q, and so there exists a unique solution for x mod q which A

can efficiently compute from the aforementioned equations, thus breaking the one wayness of
h.

Note that for the DCR based PHF there exists a trapdoor which renders the SD problem
easy, which can be efficiently computed when generating the subset membership problem
instance. Thus if the PHF arises from DCR, the DE problem is at least as hard as inverting
the one way function.

For the HSM-CL based PHF (resulting from class group cryptography), i.e. Hhsm-cl of
running example 2, best known algorithms for solving the SD problem are sub-exponential,
whereas for computing discrete logarithms in elliptic curves (which is the OWF we will consider
in our construction) there currently exist only exponential algorithms. Consequently for this
application the DE problem must have an exponential complexity.

5.2.2 EC-DSA-Friendly PHF

To build threshold EC-DSA from a PHF, we require a number of properties from the underlying
PHF. In the following, we define the notion of an EC-DSA-friendly PHF, essentially it is a
PHF which meets sufficient properties to ensure simulation based security in the protocol of
Section 5.2.4.

Definition 5.7 (EC-DSA-friendly PHF). Let λ be a positive integer, and let (G, P, q) ←
GenG(1λ). The output of generator GenG defines the one way function expG which to x ∈
Z/qZ maps the EC point xP . Let SM := (X̂,X, L̂,W,R) be a subgroup membership
problem, and consider the associated projective hash function H := (hashkg, p̂rojkg, projkg,
hash, ̂projhash, projhash). The projective hash function H is (q, f, Υ̂,Υ, δL, δs, δde)-EC-DSA-
friendly if:

• H is homomorphically extended (Definition 3.12) in K ′hp ⊆ Khp; key homomorphic (Def-
inition 3.13); and Khk is a cyclic additive Abelian group;

• the co-domain Π of hash is a finite Abelian group which contains a cyclic subgroup F ,
generated by f , of order q;

• there exists an efficient isomorphism from (Z/qZ,+) to (F, ·), mapping m ∈ Z/qZ to
fm, whose inverse logf is also efficiently computable;

• H is (Υ̂,Υ, F)-decomposable, where Υ̂ ∈ X̂, Υ ∈X;

• SM is a δL-hard subgroup membership problem;

• H is δs-smooth over X on F ;

• the DE problem is δde(λ)-hard for (GenSM, GenG) (cf. Definition 5.4).

Remark. Consider an EC-DSA-friendly PHF as defined above. For hk ← hashkg(SM), if
hash(hk,Υ) = 1 smoothness does not hold, hence we assume this is not the case. Throughout
the rest of the paper, we denote Ψ the considered generator of Khk, which satisfies hash(Ψ,Υ) =
f . Consequently, for any hk ∈ Khk, where hk = c ·Ψ (for some c ∈ Z), and for any y = Υb (for
some b ∈ Z), one has hash(hk, y) = f bc.

166

CHAPTER 5. DISTRIBUTING EC-DSA

5.2.3 Zero-Knowledge Proofs

We use the Fzk, Fcom-zk hybrid model. Ideal ZK functionalities are used for the following
relations, were the parameters of the elliptic curve (G, P, q) ← GenG(1λ) are implicit public
inputs:

1. Rdl := {(Q,w)|Q = wP}, proves the knowledge of the discrete logarithm of an elliptic
curve point.

2. Rphf-dl := {(hp, (c1, c2), Q1); (x1, w)|(c1, c2) = Enc(hp, x1; (u,w)) ∧ (c1, w) ∈ R ∧ Q1 =
x1P}, proves the knowledge of the randomness used for encryption, and of the value
x1 which is both encrypted in the ciphertext (c1, c2) and the discrete logarithm of the
elliptic curve point Q1.

The functionalities F
Rdl
zk , F

Rdl
com-zk can be instantiated using Schnorr proofs [Sch91]. For the

Rphf-dl proof, Lindell in [Lin17a] uses a proof of language membership as opposed to a proof
of knowledge. Though his technique is quite generic, it cannot be used in our setting. Indeed,
his approach requires that the ciphertext be valid, which means that the element c must
be decryptable. As Lindell uses Paillier’s encryption scheme, any element of (Z/N2Z)× is a
valid ciphertext. This is not the case for a PHF-based encryption scheme: as it incorporates
redundancy not any pair in X̂ × Π is a valid ciphertext. For our instantiations, we use the
protocols of Section 3.6. Note that in any case, we need not prove that x1 is an integer in the
range {0, . . . , q − 1} since both the message space of our PKE scheme and the EC group G
are of order q.

5.2.4 Construction

Consider the description (G, P, q) ← GenG(1λ); a subgroup membership problem SM :=
(X̂,X, L̂,W, R) and the associated PHF H, which we assume to be (q, f, Υ̂,Υ, δL, δs, δde)-
EC-DSA-friendly. Further consider the resulting linearly homomorphic PKE scheme PKE :=
(Setup, KeyGen,Enc,Dec,EvalSum, EvalScal) (as described in Section 3.4). From these building
blocks, in Fig. 5.5 we present a new two-party EC-DSA signing protocol.

5.2.5 Simulation Based Security

We here provide a proof that the protocol of Fig. 5.5 is secure in the Ideal/Real paradigm.
To this end, we must argue the indistinguishability of an adversary’s view – corrupting either
party P1 or P2 – in real and simulated executions.

As noted in Section 3.4, in Cramer-Shoup like encryption schemes resulting from PHFs,
thanks to the smoothness of the PHF the challenger in the ind-cpa-security game knows hk,
and this does not help solve the computational problem (i.e. the subset membership problem)
underlying security. We insist on this point since in Lindell’s protocol [Lin17a], many issues
arise from the use of Paillier’s cryptosystem, since if the challenger uses the secret key, one can
no longer reduce the security of the protocol to the ind-cpa-security of the Paillier encryption
scheme. In particular this implies that in Lindell’s game based proof, instead of letting the
simulator use the Paillier secret key to decrypt the incoming ciphertext (and check the cor-
rupted party P2 did not send a different ciphertext c than that prescribed by the protocol),
the simulator guesses when the adversary may have cheated by simulating an abort with a
probability depending on the number of issued signatures. This results in a proof of security
which is not tight.

167

CHAPTER 5. DISTRIBUTING EC-DSA

P1 IKeyGen(G, P, q) P2

x1 ←↩ Z/qZ
Q1 ← x1P

(com-prove,1,Q1,x1)−−−−−−−−−−−−→ F
Rdl
com-zk

(proof-receipt,1)−−−−−−−−−−→
x2 ←↩ Z/qZ

P1 aborts if
(proof, 2, Q2)
not received.

(proof,2,Q2)←−−−−−−− F
Rdl
zk

(prove,2,Q2,x2)←−−−−−−−−− Q2 ← x2P

(decom-proof,1)−−−−−−−−−→ F
Rdl
com-zk

(decom-proof,1,Q1)−−−−−−−−−−−−→
hk←↩ hashkg(SM); hp← projkg(hk)

Sample (u,w) ∈ R

ckey ← Enc(hp, x1; (u,w))
(prove,3,(hp,ckey,Q1),(x1,w))
−−−−−−−−−−−−−−−−−→ F

Rphf-dl
zk

(proof,3,(hp,ckey,Q1))−−−−−−−−−−−−−→

P2 aborts if
(decom-proof,1, Q1),

(proof, 3, (hp, ckey, Q1))
not received

or if hp /∈ Khp.
Q← x1Q2 Q← x2Q1

P1 ISign(m, sid) P2

k1 ←↩ Z/qZ
R1 ← k1P

(com-prove,sid||1,R1,k1)−−−−−−−−−−−−−−−→ F
Rdl
com-zk

(proof-receipt,sid||1)−−−−−−−−−−−−→ k2 ←↩ Z/qZ
R2 ← k2P

P1 aborts if
(proof, sid||2, R2)

not received.

(proof,sid||2,R2)←−−−−−−−−−− F
Rdl
zk

(prove,sid||2,R2,k2)←−−−−−−−−−−−−

(decom-proof,sid||1)−−−−−−−−−−−−→ F
Rdl
com-zk

(decom-proof,sid||1,R1)−−−−−−−−−−−−−−→
P2 aborts if

(decom-proof, sid||1, R1)
not received.

m′ ← H(m)
R = (rx, ry)← k1R2 R = (rx, ry)← k2R1

r ← rx mod q r ← rx mod q
c1 ← Enc(hp, k−1

2 ·m′)
c2 ← EvalScal(hp, ckey, k−1

2 · r · x2)
α← Dec(hk, c3) c3←−−−−−−−−−− c3 ← EvalSum(hp, c1, c2)

ŝ← α · k−1
1 , s← min(ŝ, q − ŝ)

If Verif(Q,m, (r, s)) = 0 then abort
else return (r, s)

Figure 5.5: Two-Party EC-DSA Key Generation and Signing Protocols from PHFs

Moreover, though this technique suffices for a game-based definition, it does not for simu-
lation based security definitions. Thus, in order to be able to prove their protocol using sim-
ulation, Lindell uses a non-standard interactive assumption (the Paillier-EC assumption, cf.
Appendix C). Thanks to our use of PHFs we are able to avoid such an interactive assumption.
Moreover, should one write a game based proof for our construction, the security loss present
in [Lin17a] would not appear.

Theorem 5.8. Let λ be a positive integer and (G, P, q)← GenG(1λ), where the DL problem is
δdl-hard for GenG. Let SM := (X̂,X, L̂,W,R) be a subgroup membership problem, and con-
sider the associated projective hash function H, which we assume to be (q, f, Υ̂,Υ, δL, δs, δde)-
EC-DSA-friendly. Then the protocol of Fig. 5.5 securely computes Fec-dsa in the (Fzk,Fcom-zk)-
hybrid model in the presence of a malicious static adversary (under the ideal/real definition).
Indeed there exists a simulator for the scheme such that no PT adversary – having corrupted
either P1 or P2 – can distinguish a real execution of the protocol from a simulated one with
probability greater than 2δL + δde + 2δdl + 1/q + δs.

Proof. In this proof, the simulator S only has access to an ideal functionality Fec-dsa for

168

CHAPTER 5. DISTRIBUTING EC-DSA

computing EC-DSA signatures, so all it learns in the ideal world is the public key Q which
it gets as output of the KeyGen phase from Fec-dsa and signatures (r, s) for messages m of its
choice as output of the Sign phase. However in the real world, the adversary, having either
corrupted P1 or P2 will also see all the interactions with the non corrupted party which lead to
the computation of a signature. Thus S must be ale to simulate A’s view of these interactions,
while only knowing the expected output. To this end S must set up with A the same public
key Q that it received from Fec-dsa, in order to be able to subsequently simulate interactively
signing messages with A, using the output of Fec-dsa from the Sign phase.

S simulates P2 – Corrupted P1. We first show that if an adversary A1 corrupts P1, one can
construct a simulator S s.t. the output distribution of S is indistinguishable from A1’s view
in an interaction with an honest party P2. The main difference here with the proof of [Lin17a]
arises from the fact we no longer use a ZKP from which S can extract the encryption scheme’s
secret key. Instead, S extracts the randomness used for encryption and the plaintext x1 from
the ZKPoK for Rphf-dl, which allows it to recompute the ciphertext and verify it obtains the
expected value ckey. Moreover since the message space of our encryption scheme is Z/qZ, if
A1 does not cheat in the proofs (this is guaranteed by the (Fzk,Fcom-zk)-hybrid model), the
obtained distributions are identical in the ideal and real executions (as opposed to statistically
close as in [Lin17a]).

Key Generation Phase

1. Given input KeyGen(G, P, q), the simulator S sends KeyGen(G, P, q) to the ideal func-
tionality Fec-dsa and receives back a public key Q.

2. S invokes A1 on input IKeyGen(G, P, q) and receives the commitment to a PoK of x1

satisfying Q1 = x1P denoted (com-prove, 1, Q1, x1) as A1 intends to send to F
Rdl
com-zk.

Thus S can extract x1 and Q1.

3. Using the extracted value x1, S verifies that Q1 = x1P . If so, it computes Q2 ← x−1
1 Q

(using the value Q received from Fec-dsa); otherwise S samples a random Q2 from G.

4. S sends (proof, 2, Q2) to A1 as if sent by F
Rdl
zk thereby S simulates a ZKPoK of x2

satisfying Q2 = x2P .

5. S receives (decom-proof, 1) as A1 intends to send to F
Rdl
com-zk and simulates P2 aborting

if Q1 6= x1P . S also receives (prove, 3, (hp, ckey, Q1), (x1, w)) as A1 intends to send to

F
Rphf-dl
zk .

6. S computes u from w such that (u,w) ∈ R, and using the extracted value x1 verifies that
ckey = Enc(hp, x1; (u,w)); if not S simulates P2 aborting.

7. S sends continue to Fec-dsa for P2 to receive output, and stores (x1, Q, ckey).

When taking Fzk and Fcom-zk as ideal functionalities, the only difference between the real
execution as ran by an honest P2, and the ideal execution simulated by S is that in the former
Q2 ← x2P where x2 ←↩ Z/qZ, whereas in the latter Q2 ← x−1

1 Q, where Q is the public
key returned by the ideal functionality Fec-dsa. However since Fec-dsa samples Q uniformly at
random from G, the distribution of Q2 in both cases is identical.

Signing Phase

1. On input Sign(sid,m), S sends Sign(sid,m) to Fec-dsa and receives back a signature (r, s).

169

CHAPTER 5. DISTRIBUTING EC-DSA

2. S computes the point R = (r, ry) using the EC-DSA verification algorithm.

3. S invokes A1 with input ISign(sid,m) and simulates the first three interactions so that
A1 computes R. The strategy is similar to that used to compute Q, in brief, it proceeds
as follows:

(a) S receives (com-prove, sid||1, R1, k1) from A1.

(b) If R1 = k1P then S sets R2 ← k−1
1 R; else R2 ←↩ G. Then S sends (proof, sid||2, R2)

to A1.

(c) S receives (decom-proof, sid||1) from A1. If R1 6= k1P then S simulates P2 aborting
and instructs the trusted party computing Fec-dsa to abort.

4. S computes c3 ← Enc(hp, k1 · s mod q), where s was received from Fec-dsa, and sends c3

to A1.

As with the computation of Q2 in the key generation phase, R2 is distributed identically in
the real and ideal executions since R is randomly generated by Fec-dsa. The ZK proofs and
verifications are also identically distributed in the Fzk, Fcom-zk-hybrid model. Thus, the only
difference between a real execution and the simulation is the way c3 is computed. In the
simulation it is an encryption of k1 · s = k1 · k−1(m′ + r · x) = k−1

2 · (m′ + r · x) mod q,
whereas in a real execution c3 is computed from ckey, using the homomorphic properties of
the encryption scheme. However, notice that as long as there exist (u,w) such that ckey =

Enc(hp, x1; (u,w)) where Q = x1P – which is guaranteed by the ideal functionality F
Rphf-dl
zk

– and as long as the homomorphic operations hold – which is guaranteed for any hp in the
efficiently verifiable ensemble K ′hp – the c3 obtained in the real scenario is also an encryption
of s′ = k−1

2 · (m′ + r · x) mod q. Thus c3 is distributed identically in both cases.
This implies that the view of a corrupted P1 is identical in the real and ideal executions of

the protocol (in the Fzk, Fcom-zk-hybrid model), i.e., the simulator perfectly simulates the real
environment, which completes the proof of this simulation case.

S simulates P1 – Corrupted P2. We now suppose an adversary A2 corrupts P2 and describe
the simulated execution of the protocol. We demonstrate via a sequence of games – where the
first game is a real execution and the last game is a simulated execution – that both executions
are indistinguishable. This proof methodology differs considerably to that of [Lin17a] since the
main differences between a real and simulated execution are due to the ciphertext ckey, so the
indistinguishability of both executions reduces to the hardness of the SMP, the smoothness of
the underlying PHF, and the hardness of the DE problem. We first describe an ideal execution
of the protocol:

Key Generation Phase

1. Given input KeyGen(G, P, q), simulator S sends KeyGen(G, P, q) to Fec-dsa and receives
back Q.

2. S invokes A2 with input IKeyGen(G, P, q) and sends (proof-receipt, 1) as A2 expects to
receive from F

Rdl
com-zk.

3. S receives (prove, 2, Q2, x2) as A2 intends to send to F
Rdl
zk . S extracts x2 from this inter-

action.

4. S verifies that Q2 is a non zero point on the curve and that Q2 = x2P . If so S computes
Q1 ← (x2)−1Q and sends (decom-proof, 1, Q1) to A2 as it expects to receive from F

Rdl
com-zk.

If not S simulates P1 aborting and halts.

170

CHAPTER 5. DISTRIBUTING EC-DSA

5. S samples hk←↩ hashkg(SM) and computes hp← projkg(hk). It also samples x̃1 ←↩ Z/qZ
and (u,w) ∈ R and computes ckey ← Enc(hp, x̃1; (u,w)).

6. S sends (proof, 3, (hp, ckey, Q1)) to A2 as A2 expects to receive from F
Rphf-dl
zk .

7. S sends continue to Fec-dsa for P1 to receive output, and stores Q.

Signing Phase

1. Upon input Sign(sid,m), S sends Sign(sid,m) to Fec-dsa and receives back a signature
(r, s).

2. S computes the point R = (r, ry) using the EC-DSA verification algorithm.

3. S invokes A2 with input ISign(sid,m) and sends (proof-receipt, sid||1) as A2 expects to
receive from F

Rdl
com-zk.

4. S receives (prove, sid||2, R2, k2) as A2 intends to send to F
Rdl
zk . S extracts k2 from this

interaction.

5. S verifies that R2 is a non zero point and that R2 = k2P . If so it computes R1 ← k−1
2 R

and sends (decom-proof, sid||1, R1) to A2 as it expects to receive from F
Rdl
com-zk. If not S

simulates P1 aborting and instructs the trusted party computing Fec-dsa to abort.

6. S receives c3 = (u3, e3) from A2, which it can decrypt using hk, i.e.

α← logf
(
e3 · hash(hk, u3)−1

)
.

If α = k−1
2 · (m′+ r · x2 · x̃1) mod q then S sends continue to the trusted party Fec-dsa, so

that the honest party P1 receives output. Otherwise S instructs Fec-dsa to abort.

We now describe the sequence of games. Game0 is the real execution of the protocol from P1’s
view, and we finish in Game6 which is the ideal simulation described above. In the following
intermediary games, only the differences in the steps performed by S are depicted.

Game0 Game1
Q← x1x2P Q← x1x2P

...
...

hk←↩ hashkg(SM) hk←↩ hashkg(SM)
hp← projkg(hk) hp← projkg(hk)

Sample (u,w) ∈ R
ckey ← Enc(hp, x1) ckey ← (u, hash(hk, u) · fx1)
Send ckey to A2 Send ckey to A2

...
...

R← k1k2P , r ← rx mod q R← k1k2P , r ← rx mod q
...

...
Receive c3 := (u3, e3) from A2 Receive c3 := (u3, e3) from A2

Let α← logf
(
e3 · hash(hk, u3)−1

)
Let α← logf

(
e3 · hash(hk, u3)−1

)
...

...
s← α · k−1

1 s← α · k−1
1

If not Verif(Q,m, (r, s)) then abort If not Verif(Q,m, (r, s)) then abort
else return (r, s) else return (r, s)

171

CHAPTER 5. DISTRIBUTING EC-DSA

Game2 Game3
Q← x1x2P Q← Fec-dsa

Extract x2 from (prove, 2, Q2, x2)
x̃1 ←↩ Z/qZ

...
...

hk←↩ hashkg(SM) hk←↩ hashkg(SM)
hp← projkg(hk) hp← projkg(hk)
u←↩X\L u←↩X\L

ckey ← (u, hash(hk, u) · fx1) ckey ← (u, hash(hk, u) · f x̃1)
Send ckey to A2 Send ckey to A2

...
...

R← k1k2P , r ← rx mod q (r, s)← Fec-dsa, r ← rx mod q
Extract k2 from (prove, sid||2, R2, k2)

...
...

Receive c3 := (u3, e3) from A2 Receive c3 := (u3, e3) from A2
...

...
Let α← logf

(
e3 · hash(hk, u3)−1

)
Let α← logf

(
e3 · hash(hk, u3)−1

)
s← α · k−1

1 (1) If α 6= k−1
2 (m′ + rx̃1x2) then

If not Verif(Q,m, (r, s)) then abort (2) If (αk2)P 6= mP + rQ abort
else return (r, s) else return (r, s)

Game4 Game5 Game6
Q← Fec-dsa Q← Fec-dsa Q← Fec-dsa

Extract x2 from (prove, 2, Q2, x2) Extract x2 from (prove, 2, Q2, x2) Extract x2 from (prove, 2, Q2, x2)
x̃1 ←↩ Z/qZ x̃1 ←↩ Z/qZ x̃1 ←↩ Z/qZ

...
...

...
hk←↩ hashkg(SM) hk←↩ hashkg(SM) hk←↩ hashkg(SM)
hp← projkg(hk) hp← projkg(hk) hp← projkg(hk)
u←↩X\L Sample (u,w) ∈ R

ckey ← (u, hash(hk, u) · f x̃1) ckey ← (u, hash(hk, u) · f x̃1) ckey ← Enc(hp, x̃1)
Send ckey to A2 Send ckey to A2 Send ckey to A2

...
...

...
(r, s)← Fec-dsa, r ← rx mod q (r, s)← Fec-dsa, r ← rx mod q (r, s)← Fec-dsa, r ← rx mod q

Extract k2 from (prove, sid||2, R2, k2) Extract k2 from (prove, sid||2, R2, k2) Extract k2 from (prove, sid||2, R2, k2)
...

...
...

Receive c3 := (u3, e3) from A2 Receive c3 := (u3, e3) from A2 Receive c3 := (u3, e3) from A2
...

...
...

Let α← logf
(
e3 · hash(hk, u3)−1

)
Let α← logf

(
e3 · hash(hk, u3)−1

)
Let α← logf

(
e3 · hash(hk, u3)−1

)
If α 6= k−1

2 (m′ + rx̃1x2) If α 6= k−1
2 (m′ + rx̃1x2) If α 6= k−1

2 (m′ + rx̃1x2)
then abort then abort then abort

(check (2) removed)

Let us now demonstrate that each game step is indistinguishable from the view of A2.
Intuitively, in Game1 the simulator uses the secret hashing key hk instead of the public projec-
tion key hp to compute ckey. Though the values are computed differently, they are distributed
identically, and are perfectly indistinguishable. Next in Game2 we replace the first element of
the ciphertext (in Game1 this is u ∈ L) with an element u ∈ X\L. By the hardness of the
subset membership problem Game1 and Game2 are indistinguishable. Next in Game3 we switch
to the ideal world, so Q and R are received from Fec-dsa. The value x1 such that Q = x1x2P
is unknown to S simulating P1, and the value x̃1 encrypted in ckey is sampled uniformly at
random from Z/qZ, and is unrelated to Q. Proving indistinguishability between Game2 and
Game3 is the most involved analysis of all our game steps. The smoothness of the PHF en-
sures that the ciphertext ckey follows identical distributions in both games from A2’s view;
however difficulties arise due to the check performed by S on α after decrypting c3. Indeed

172

CHAPTER 5. DISTRIBUTING EC-DSA

if A2 produces a ciphertext c3 which passes the check in one game, but not in the other,
clearly A2 can distinguish both games. To deal with this, in Game3 we introduce an additional
check (2). Check (2) is performed using the EC point Q, and compares α to k−1

2 (m′ + rx1x2).
On the other hand check (1) is performed using the randomly sampled x̃1, and compares α
to k−1

2 (m′ + rx̃1x2). This extra check allows us to ensure that if A2 can cause one game to
abort, while the other does not, it has either broken the double encoding problem, or fixes
the value of x̃1. Since from the smoothness of the PHF, x̃1 follows a distribution δs-close to
U(Z/qZ) from A2’s view, this cannot occur with probability greater than 1/q+ δs. So Game2
and Game3 are indistinguishable. In Game4 we remove check (2), and demonstrate that if A2

could distinguish both games, one could use A2 to break the DL problem in G.
Next we use the hardness of the subset membership problem again to hop from Game4 to

Game5, so that in the latter the first element of the ciphertext is once again in L; and finally
Game5 to Game6 are identical from an adversary’s point of view since we simply use the public
evaluation function of the hash function projhash instead of the private one.

We denote Ei the event algorithm A2 interacting with S in Gamei outputs 1. Thus by
demonstrating that |Pr[E0] − Pr[E6]| is negligible, we demonstrate that, from A2’s view, the
real and ideal executions are indistinguishable.

Game0 to Game1. In Game1 S uses the secret hashing key hk instead of the public projection
key hp and the witness w to compute ckey. Both games are identical from A2’s view:

|Pr[E1]− Pr[E0]| = 0.

Game1 to Game2. In Game2 the ciphertext component u of ckey is sampled from X\L instead
of from L. Both games are indistinguishable under the δL-hardness of SM. Thus:

|Pr[E2]− Pr[E1]| 6 δL.

Game2 to Game3. In Game3 the points Q = x1x2P and R come from the functionality Fec-dsa,
while in Game2 they are computed as in the real protocol. As a result in Game3 the value x̃1

encrypted in ckey is unrelated to x1. Let us denote ckey := (u, e), where e = hash(hk, u)f x̃1 ,
the invalid ciphertext which S sends to A2 in Game3. Using the fact H is decomposable, and
since u ∈ X\L, we can write u = zy, for unique z ∈ L and y ∈ 〈Υ〉. We denote b ∈ Z/qZ
the unique value such that hash(Ψ, y) = f b. Note that since u /∈ L̂, it holds that b 6= 0 mod q.
Now to demonstrate that Game2 and Game3 are indistinguishable from A2’s view, we start by
considering a fixed hk′ ∈ Khk satisfying the following equations:{

projkg(hk′) = hp = projkg(hk),

hash(hk′, y)fx1 = hash(hk, y)f x̃1 .

Note that the smoothness of H over X on F ensures that such a hk′ exists (it is not necessarily
unique). We can now see that in Game3, ckey is an invalid encryption of both x1 and of x̃1, for
respective hashing keys hk′ and hk, but for the same public projection key hp, indeed:

ckey = (u, hash(hk, u) · f x̃1) = (u, projhash(hp, z, w) · hash(hk, y) · f x̃1)
= (u, projhash(hp, z, w) · hash(hk′, y) · fx1) = (u, hash(hk′, u) · fx1)

Let us denote γ and γ′ ∈ Z the values such that hk = γ · Ψ and hk′ = γ′ · Ψ, so that
hash(hk,Υ) = fγ and hash(hk′,Υ) = fγ

′
. Now since hash(Ψ, y) = f b, it holds that

bγ + x̃1 = bγ′ + x1 mod q ⇔ γ′ − γ = b−1(x̃1 − x1) mod q. (5.1)

173

CHAPTER 5. DISTRIBUTING EC-DSA

The adversary A2 gets the EC-DSA public key Q, the public projection key hp = projkg(hk),
and ckey from S (at this point its view is identical to its’ view in Game2). Then A2 computes
c3 = (u3, e3), which it sends to S. The difference between Game2 and Game3 appears now in
how S attempts to decrypt c3. In Game2 it would have used hk′, whereas in Game3 it uses hk.

Notation. We denote α the random variable obtained by decrypting c3 (received in Game3)
with decryption key hk; we denote α′ the random variable obtained by decrypting c3 (received
in Game3) with decryption key hk′; we introduce a hypothetical Game3′, which is exactly as
Game3, only one decrypts c3 with decryption key hk′, thus obtaining α′, and check (1) of Game3
is replaced by ‘If α 6= k−1

2 (m′ + rx1x2)’. Since both tests of Game3′ are redundant, we only
keep check (2).

Observation. The view of A2 in Game2 and in Game3′ is identical. By demonstrating that
the probability A2’s view differs when S uses α in Game3 from when it uses α′ in Game3′ is
negligible, we can conclude that A2 cannot distinguish Game2 and Game3 except with negligible
probability.

Let us consider the ciphertext c3 = (u3, e3) ∈ X̂ × Π sent by A2. By the decomposability
of H we know there exist unique z3 ∈ L̂, y3 ∈ 〈Υ̂〉 satisfying u3 = z3y3. Moreover there
exists a unique b3 ∈ Z/qZ satisfying hash(Ψ, y3) = f b3 . By the homomorphic properties of
H the decryption algorithm applied to c3 with decryption key hk (resp. hk′) returns ⊥ if
e3 · hash(hk, u3)−1 = e3 · hash(hk, z3)−1 · hash(hk, y3)−1 /∈ F (resp. e3 · hash(hk′, u3)−1 = e3 ·
hash(hk′, z3)−1 · hash(hk′, y3)−1 /∈ F). However since z3 ∈ L̂, and p̂rojkg(hk′) = p̂rojkg(hk),
by correctness of H it holds that hash(hk′, z3) = hash(hk, z3); while hash(hk′, y3) = fγ

′·b3

and hash(hk, y3) = fγ·b3 live in F . Consequently the decryption algorithm applied to c3 with
decryption key hk returns ⊥ if and only if it does so with decryption key hk′ (i.e. α =⊥ if and
only if α′ =⊥). In this case Game3 is identical to Game3′ from A2’s view (S aborts in both
cases). We hereafter assume decryption does not fail, which allows us to adopt the following
notation: e3 = hash(hk, z3)fh3 = hash(hk′, z3)fh3 with h3 ∈ Z/qZ. We thus have:

α← logf (e3 · hash(hk, u3)−1),

= h3 − b3 · γ mod q

and α′ ← logf (e3 · hash(hk′, u3)−1),

= h3 − b3 · γ′ mod q

such that, injecting Eq. (5.1), one gets:

α− α′ = b3(γ′ − γ) = b3b
−1(x̃1 − x1) mod q.

We now consider four cases:

1. α = α′ mod q. This case occurs if b3 = 0, i.e. u3 ∈ L̂ and so u3 is a valid ciphertext; or if
x̃1 = x1 mod q. If this occurs Game2 and Game3 are identical from A2’s view. Note that
this is the only case where all checks pass for both α and α′.

2. α 6= α′ mod q but α − α′ = k−1
2 rx2(x̃1 − x1) mod q. This occurs if b3 = k−1

2 rx2b mod q,
i.e. A2 homomorphic operations on ckey, and the difference between α and α′ is that
expected by the simulator. This results in identical views from A2’s perspective because
α causes check (1) to pass if and only if α′ causes check (2) to pass:

α = k−1
2 (m′+rx̃1x2)⇔ α′+k−1

2 rx2(x̃1−x1) = k−1
2 (m′+rx̃1x2)⇔ α′ = k−1

2 (m′+rx2x1).

3. α 6= α′ mod q and α− α′ 6= k−1
2 rx2(x̃1 − x1) mod q. We here consider three sub-cases:

174

CHAPTER 5. DISTRIBUTING EC-DSA

(a) Either both tests fail for α and test (2) fails for α′; i.e. α 6= k−1
2 (m′ + rx̃1x2) mod

q; and α, α′ 6= k−1
2 (m′ + rx1x2) mod q. This results in identical views from A2’s

perspective.

(b) Either the check on α′ passes. This means that:

α′ = k−1
2 (m′ + rx1x2) mod q.

Since α − α′ 6= k−1
2 rx2(x̃1 − x1) mod q necessarily check (1) on α fails; and since

α 6= α′ mod q necessarily check (2) on α fails. Consequently if this sub-case occurs,
A2’s view differs. We demonstrate that if the DE problem is hard, this case occurs
with negligible probability.
Suppose that an algorithm D is able to cause this case to occur with non neg-
ligible probability p. Then we can devise an algorithm Ŝ which uses D to break
the DE assumption for (GenSM, expG). Algorithm Ŝ gets as input a DE challenge
point Q = xP and the description SM of a subset membership problem, and must
output hp, (u1, hash(hk′, u1)fx) and (u2, hash(hk′, u2)fx) where hp = projkg(hk′);
u1, u2 ∈ X̂\L̂; u1 6= u2; and u1/u2 ∈ X̂\L̂. Precisely Ŝ works as S would in
Game3, interacting with D instead of A2, the only difference being that instead of
using the EC-DSA public key it receives from Fec-dsa, Ŝ uses the DE challenge Q.
Upon receiving c3 from D, Ŝ computes c1 ← EvalScal(hp,EvalSum(hp, c3,−k−1

2 m′),
k2r
−1). Finally Ŝ computes c2 := (u2, e2) = ckey� (1, fx2) and outputs hp, c1, c2 to

its’ own double encoding challenger.

Analysis. Let us denote x2, k2 the values Ŝ extracts from its interactions with D.
We further denote x1 := x · x−1

2 (unknown to Ŝ). Ŝ samples hk ←↩ hashkg(SM),
and computes hp ← projkg(hk). It then samples x̃1 ←↩ Z/qZ and computes ckey ←
(u, hash(hk, u) · f x̃1) which can be interpreted as (u, hash(hk′, u) · fx1). Thus c2 =
(u2, e2) = ckey � (1, fx2) = (u, hash(hk′, u) · fx), where u2 ∈ X̂\L̂ by construction.

When Ŝ receives c3 from D, with probability p, using decryption key hk′, c3 decrypts
to α′ = k−1

2 (m′ + rx1x2) mod q. Ŝ does not know hk′, but using the homomorphic
properties of the PKE, Ŝ computes c1 := (u1, e1) ← (u1, hash(hk′, u1)fx). Since
we ruled out the case 1. (where α = α′ mod q), necessarily u1 ∈ X̂\L̂. And since
we ruled out the case 2. (where α − α′ = k−1

2 rx2(x̃1 − x1) mod q), necessarily
u1/u2 ∈ X̂\L̂. Thus with probability p, Ŝ breaks the double encoding assumption,
and consequently p 6 δde, which concludes that this case occurs with probability
6 δde.

(c) Else one of the checks on α passes.

i. If α = k−1
2 (m′ + rx1x2) mod q, then since α 6= α′ mod q necessarily check (2)

on α′ fails. However if this occurs, since S has extracted k2, x2 from the ZK
proofs, it can compute x1 from α, thereby breaking the DL problem in G. This
occurs with probability 6 δdl.

ii. If α = k−1
2 (m′ + rx̃1x2) mod q, then since α − α′ 6= k−1

2 rx2(x̃1 − x1) mod q
necessarily check (2) on α′ fails. Let us prove that information theoretically,
this can not happen with probability greater than 1/q+ δs. For clarity, we first
recall the expression of ckey received by A2:

ckey = (zy, projhash(hp, z)hash(hk, y)f x̃1) = (zy, projhash(hp, z)f (x̃1+bγ))

where z ∈ L, y ∈ 〈Υ〉, and b ∈ (Z/qZ)∗ are unique, and hash(Ψ, y) = f b. We
also recall the expression of c3, sent by A2 to S. Since c3 decrypts to α with

175

CHAPTER 5. DISTRIBUTING EC-DSA

decryption key hk, we can write:

c3 = (z3y3, projhash(hp, z3)fα+b3γ)

where z3 ∈ L̂, y3 ∈ 〈Υ̂〉, and b3 ∈ (Z/qZ)∗ are unique, and hash(Ψ, y3) = f b3 .
Let us denote π0 := x̃1 + bγ mod q, and π1 := α + b3γ mod q. For this case to
occur, it must hold that α = k−1

2 (m′ + rx̃1x2) mod q, so

π1 = k−1
2 (m′ + rx̃1x2) + b3γ mod q

⇔ x̃1 = (k2π1 −m′ − k2b3γ)(x2r)−1 mod q

Substituting γ for b−1(π0 − x̃1) yields:

x̃1 = (k2π1 −m′ − k2b3b
−1(π0 − x̃1))(x2r)−1 mod q

⇔ x̃1(1− k2b3(bx2r)−1) = (k2π1 −m′ − k2b3b
−1π0)(x2r)−1 mod q.

As we dealt with b3 = k−1
2 rx2b mod q in case 2, here b3 6= k−1

2 rx2b mod q, and
1− k2b3(bx2r)−1 is invertible mod q so we can write:

x̃1 = (k2π1 −m′ − k2b3b
−1π0)(x2r)−1(1− k2b3(bx2r)−1)−1 mod q, (5.2)

where π0, b are fixed by ckey; π1, b3 are fixed by c3; and m′, r, k2, x2 are also
fixed from A2’s view. So given A2’s view and A2’s output c3, all the terms on
the right hand side of Eq. (5.2) are fixed. However, given Q, hp and ckey (which
is all the information A2 gets prior to outputting c3), the δs-smoothness of H
ensures that x̃1 follows a distribution δs-close to U(Z/qZ). For the current case
to occur, Eq. (5.2) must hold, thus from being given a view where x̃1 follows
a distribution δs-close to U(Z/qZ), A2 has succeeded in fixing this random
variable to be the exact value sampled by S. This occurs with probability
6 1/q + δs.

Combining the above, we get that Game2 and Game3 differ from A2’s view if and only if we
are in case 3. (b) or 3. (c), which occur with probability 6 1/q + δs + δde + δdl. Thus:

|Pr[E3]− Pr[E2]| 6 1/q + δs + δde + δdl.

Game3 to Game4. In Game4 check (2) is removed. Both games differ if and only if check
(1) fails in both of them, while check (2) passes. If this happens S has decrypted c3 to the
value α = k−1

2 (m′ + rx1x2) mod q. Since S has extracted k2, x2 from the simulated proofs of
knowledge, r from the EC-DSA signature it received and knows m′, it can compute x1 from
α, thereby computing the DL of point Q. Thus distinguishing these games reduces to the
hardness of breaking the DL problem in G. We conclude that:

|Pr[E4]− Pr[E3]| 6 δdl.

Game4 to Game5. The change here is exactly that between Game1 and Game2, thus both games
are indistinguishable under the hardness of the subset membership problem and:

|Pr[E5]− Pr[E4]| 6 δL.

Game5 to Game6. The change here is exactly that between Game0 and Game1, thus both games
are perfectly indistinguishable, even for an unbounded adversary, thus:

|Pr[E6]− Pr[E5]| = 0.

176

CHAPTER 5. DISTRIBUTING EC-DSA

Real/Ideal executions. Putting together the above probabilities, we get that:

|Pr[E6]− Pr[E0]| 6 2δL + δde + 2δdl + 1/q + δs,

and so, assuming the hardness of the subset membership problem, the smoothness of H, and
the hardness of the double encoding problem, it holds that the real and ideal executions are
computationally indistinguishable from A2’s view, which concludes the proof of the theorem.

5.2.6 Instantiation from the HSM-CL Based PHF

The protocol results from a direct application of the generic construction of Fig. 5.5 using the
Hhsm-cl projective hash function (cf. running example 2 of Chapter 3). The ideal functionality
F
Rcl-dl
zk is instantiated using the zero-knowledge proof of knowledge Σcl-dl for relation Rcl-dl of

Section 3.6.1. We first explicit the DE problem for Hhsm-cl.

The double encoding problem. The DE problem (cf. Definition 5.4) is δde-hard for
SMhsm-cl and the function expG : x 7→ xP if for any PPT A, it holds that:

δde > Pr

u1, u2 ∈ Ĝ \ Ĝq, ppG := (G, P, q)
u2 · u−1

1 ∈ Ĝ \ Ĝq ppCL := (s̃, g, f, gq, Ĝ, G, F,Gq)← Gen(1λ, q)
and hp = ghkq x←↩ Z/qZ, Q← x · P

(hp, (u1, u
hk
1 · fx), (u2, u

hk
2 · fx))←A(ppG, ppCL, Q)

 .
In Lemma 5.9 we demonstrate that Hhsm-cl is EC-DSA-friendly.

Lemma 5.9. Let λ be a positive integer, and let (G, P, q)← GenG(1λ). Let expG be the func-
tion which to x ∈ Z/qZ maps the EC point xP . Consider a generator GenCL of a HSM-CL group
with an easy DL subgroup, which, on input 1λ and the prime q, outputs (s̃, g, f, gq, Ĝ, G, F,Gq).
Let SMhsm-cl and Hhsm-cl be the resulting SMP and PHF (cf. running example 2 of Chapter 3).
If D̂ (from which the hashkg algorithm of Hhsm-cl samples hashing keys) is δ-close to U(Z/n̂Z),
and the DE problem is δde-hard for (SMhsm-cl, expG) then Hhsm-cl is (q, f, f, δhsm-cl, δs, δde)-EC-
DSA-friendly where δs 6 2δ.

Proof. As demonstrated in Section 3.3.3, Hhsm-cl is homomorphically extended for public pro-
jection keys in Ĝ; key homomorphic; and Z is an abelian cyclic group. In Section 3.3.5 we saw
that Hhsm-cl is (f, F)-decomposable, where f is of order q; and using the Solve algorithm of
Definition 3.1 the mapping m ∈ Z/qZ to fm, and its inverse logf are efficiently computable.
By definition of the HSM-CL assumption SMhsm-cl is a δhsm-cl-hard SMP; and as demonstrated
in Lemma 3.16, if D̂ is δ-close to U(Z/n̂Z), H is δs-smooth over G on F with δs 6 2δ; finally
the DE problem for (SMhsm-cl, expG) is assumed to be δde(λ)-hard.

The two party EC-DSA protocol from Hhsm-cl is detailed in Fig. 5.6, and the following
corollary states its security.

Corollary 5.10 (of Theorem 5.8). If Gen is the generator of a HSM-CL group with easy DL
subgroup F , and Hhsm-cl is (q, f, f, δhsm-cl, δs, δde)-EC-DSA-friendly, the protocol of Fig. 5.6
securely computes Fec-dsa in the (Fzk,Fcom-zk)-hybrid model in the presence of a malicious
static adversary (under the ideal/real definition).

177

CHAPTER 5. DISTRIBUTING EC-DSA

P1 IKeyGen(G, P, q) P2

(s̃, g, f, gq, Ĝ, G, F,Gq)← Gen(1λ, q)
x1 ←↩ Z/qZ
Q1 ← x1P

(com-prove,1,Q1,x1)−−−−−−−−−−−−→ F
Rdl
com-zk

(proof-receipt,1)−−−−−−−−−−→
x2 ←↩ Z/qZ

P1 aborts if
(proof, 2, Q2)
not received.

Q2 ← x1P

(proof,2,Q2)←−−−−−−− F
Rdl
zk

(prove,2,Q2,x2)←−−−−−−−−−
(decom-proof,1)−−−−−−−−−→ F

Rdl
com-zk

(decom-proof,1,Q1)−−−−−−−−−−−−→
hk, ρ←↩ D̂q

hp← ghkq

ckey = (u, e)← (gρq , hp
ρfx1)

(prove,3,(hp,ckey,Q1),(x1,ρ)
−−−−−−−−−−−−−−−−→ F

Rcl-dl
zk

(proof,3,(hp,ckey,Q1))−−−−−−−−−−−−−→

P2 aborts if
(decom-proof, 1, Q1),

(proof, 3, (hp, ckey, Q1))
not received or hp /∈ Ĝ.

Q← x1Q2 Q← x2Q1

P1 Sign(m, sid) P2

k1 ←↩ Z/qZ
R1 ← k1P

(com-prove,sid||1,R1,k1)−−−−−−−−−−−−−−→ F
Rdl
com-zk

(proof-receipt,sid||1)−−−−−−−−−−−−→
k2 ←↩ Z/qZ
R2 ← k2P

P1 aborts if
(proof, sid||2, R2)

not received.

(proof,sid||2,R2)←−−−−−−−−−− F
Rdl
zk

(prove,sid||2,R2,k2)←−−−−−−−−−−−

(decom-proof,sid||1)−−−−−−−−−−−−→ F
Rdl
com-zk

(decom-proof,sid||1,R1)−−−−−−−−−−−−−−→
P2 aborts if

(decom-proof, sid||1, R1)
not received.
m′ ← H(m)

R = (rx, ry)← k1R2 R = (rx, ry)← k2R1

r ← rx mod q r ← rx mod q
τ ←↩ D̂q

c1 = (c1,1, c1,2)← (gτq , hp
τfk

−1
2 m′)

c2 = (c2,1, c2,2)← (uk
−1
2 rx2 , ek

−1
2 rx2)

c3 = (c3,1, c3,2)← (c1,1c2,1, c1,2c2,2)
c3←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

α← Solve(c3,2/c
hk
3,1)

ŝ← α · k−1
1

s← min(ŝ, q − ŝ)
If not Verif(Q,m, (r, s)) P1 aborts

Else Return (r, s)

Figure 5.6: Simulation secure two-party EC-DSA from the HSM-CL assumption.

178

CHAPTER 5. DISTRIBUTING EC-DSA

Efficiency Improvements

Consider a positive integer d. Using the ZKPoK for Rlcm-dl of Section 3.6.2, with an lcm
y ← lcm(1, 2, 3, . . . , 2d − 1), instead of Rcl-dl to prove ckey = (u, e) is well formed, one can
divide by d the number of rounds for this ZKPoK. This entails a few modification for the
overall protocol. Indeed with a proof based on the lcm trick, P2 is only convinced that cykey
is well formed. Consequently P2 must raise each component of ckey to the power y before
performing homomorphic operations, and for correctness P2 must also multiply the message
m′ by y mod q. When P1 decrypts it multiplies the decrypted value by y−1 mod q.

On the choice of d. At the end of this ZKPoK for Rlcm-dl, during which P1 proves to P2 that
it knows x1 and ρ satisfying u = gρq and e = hpρfx1 , P2 is only convinced that uy = gyρq and
ey = hpyρfyx1 , where y = lcm(1, . . . , 2d− 1). So for P2 to perform operations on ckey which are
returned to P1, without risking leaking information to P1, P2 must first raise u and e to the
power y at the end of the key generation phase.

Thus, as explained at the end of Section 3.6.2, d cannot be chosen arbitrarily large, as the
exponentiation of ciphertext components to the power y must take reasonable time. Hence we
set the challenge set to be C := {0, 1}10, and y = lcm(1, . . . , 210 − 1), which is a 1479 bits
integer, so exponentiating to the power y remains efficient. To achieve a soundness error of
2−λ the protocol must be repeated λ/10 times.

Trading statistical soundness for computational soundness. If one assumes the LO
and SR problems are hard for GenCL (cf. Section 3.2.4), and if the (deterministic) generator gq
used in the protocol of Fig. 5.6 is replaced by a random power ĝq of gq, then one can use the
ZKAoK for Rcl-dl of Fig. 3.10. For this generator to appear random to all parties, on can use
a public coin setup process (e.g. that of [LM19, Section 8.1]), which provides a description of
G, F and Gq and of a random generator ĝq of Gq. Alternatively, one can have multiple parties
jointly run an interactive setup protocol, so that the resulting generator ĝq is random to all
parties (see Section 5.3.2 for a detailed description of this interactive protocol).

Note that as presented, the ZKAoK for Rcl-dl of Fig. 3.10 is only secure against honest
verifiers. In order to plug it into the protocol of Fig. 5.6, the ZKAoK must be made secure
against malicious adversaries. To this end we can use the techniques mentioned in Section 3.7
of [Gro04,GMY06].

5.2.7 Implementation and Efficiency Comparisons

In this section we compare an implementation of our protocol of Fig. 5.6 (using the original
ZKPoK for Rcl-dl) with Lindell’s protocol of [Lin17a]. For a fair comparison, we implement
both protocols with the Pari C Library ([PAR20]), as this library handles arithmetic in class
groups, Z/nZ and elliptic curves. In particular, in this library, exponentiations in Z/nZ and in
class groups both use the same sliding window method. The running times are measured on a
single core of an Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz (even though key generation can
easily be parallelised). We do not implement commitments (this does not bias the comparison
as they appear with equal weight in both schemes), and only measure computation time and
do not include communication (again this is fair as communication is similar).

We ran our implementation on the standard NIST curves P-256, P-384 and P-521, corre-
sponding to levels of security 128, 192 and 256. For the encryption scheme, we start with a
112 bit security, as in [Lin17a], but also study the case where its level of security matches the
security of the EC.

Again as in [Lin17a], we fixed the number of rounds in ZKPs to reach a statistical soundness

179

CHAPTER 5. DISTRIBUTING EC-DSA

error of 2−40. For the distributions we also set the parameters to get statistical error of 2−40.
The ZKP for Rdl are implemented with Schnorr’s protocol.

In the following, we review the theoretical complexity and experimental results of both
schemes, before comparing them. In terms of theoretical complexity, exponentiations in the
encryption schemes dominate the computation as EC operations are much cheaper. Thus,
we only count these exponentiations; we will see this results in an accurate prediction of
experimental timings.

Lindell’s Protocol with Paillier’s Encryption Scheme

The key generation uses on average 360 Paillier exponentiations (of the form rN mod N2) but
not all of them are full exponentiations. The signing phase uses only 2 Paillier exponentiations.

The timings corresponds to the mean of several experiments (30 to 1000 depending on the
security level). The timings are quite stable other than the generation of the RSA modulus in
the key generation. We use standard RSA integers (i.e., not strong prime factors) as this would
be too slow for high security levels. For example, for 256 bits security (15360 bits modulus),
the generation of the modulus takes 95 seconds (mean of 30 experiments) with a standard
deviation of 56s. For the rest of the protocol the experimental timings are roughly equal to
the number of exponentiations multiplied by the cost of one exponentiation.

The results are summarised in Fig. 5.7a. Timings are given in milliseconds and sizes in
bits. The columns corresponds to the elliptic curve used for EC-DSA, the security parameter
in bits for the encryption scheme, the timings of the key generation and of the signing phase
and the total communication in bits for each phase. Modulus sizes are set according to the
NIST recommendations. Note that for the first line, we use a 2048 bits modulus4 as in [Lin17a]
and obtain similar experimental results.

Curve Sec. Param. Keygen (ms) Signing (ms) Keygen (b) Signing (b)
P-256 112 2 133 20 881 901 5 636
P-256 128 6 340 49 1 317 101 7 684
P-384 192 65 986 437 3 280 429 17 668
P-521 256 429 965 2 415 6 549 402 33 832

(a) Lindell’s Protocol with Paillier

Curve Sec. Param. Keygen (ms) Signing (ms) Keygen (b) Signing (b)
P-256 112 5 521 101 178 668 4 748
P-256 128 9 350 170 227 526 5 706
P-384 192 35 491 649 427 112 10 272
P-521 256 103 095 1 888 688 498 16 078

(b) Our Protocol with HSM-CL

Figure 5.7: Experimental results (timings in ms, sizes in bits)

4As opposed to 4096 as preconised by the NIST.

180

CHAPTER 5. DISTRIBUTING EC-DSA

Our Protocol from Hhsm-cl

The key generation uses a total of 160 class group exponentiations (of the form grq in the
class group of discriminant ∆q = −q3 · q̃). This corresponds to the 40 rounds of the Rcl-dl
ZKPoK of Fig. 3.7. Note that exponentiations in the group F = 〈f〉 are almost free as seen in
Section 3.1.2.

We point out that using the lcm trick of Section 3.6.2 with an lcm of y := (1, . . . , 210 − 1),
one would reduce to 4 the number of executions of the ZKPoK (to obtain the same soundness
error of 2−40), hence P1 would only be performing 16 class group exponentiations, while P2

would have to perform two class group exponentiations at the end of the key generation
protocol (these can be performed offline).

Signing uses 3 class group exponentiations (one encryption and one decryption).
We use the same number of experiments as for Lindell’s protocol. Here timings are very

stable. Indeed during key generation, we only compute the public key hp ← ghkq with one
exponentiation, as the output of Gen (mainly the discriminant ∆q of the class group and the
generator gq) is a common public parameter that only depends on the cardinality q of the
elliptic curve. As a result this can be considered as an input of the protocol, as the same
group can be used by all users. Moreover, doing this does not change the global result of the
comparison with Lindell’s protocol: the running time of Gen is dominated by the generation
of q̃, a prime of size much smaller than the factors of the RSA modulus. So even if we add
this running time in the Keygen column, this does not affect the results of our comparisons
for any of the considered security levels.

The results are summarised in Fig. 5.7b. Timings are given in milliseconds and sizes in
bits. The columns correspond to the elliptic curve used for EC-DSA, the security parameter
in bits for the encryption scheme, the timings of the key generation and of the signing phase
and the total communication in bits for each phase.

Comparison

Fig. 5.7 shows that Lindell’s protocol is faster for both key generation and signing for standard
security levels for the encryption scheme (112 and 128 bits of security) while our solution
remains of the same order of magnitude. However for high security levels our solution becomes
faster, in terms of key generation from a 192-bits security level, and for both key generation
and signing from a 256-bits security level.

In terms of communication, our solution outperforms the scheme of Lindell for all levels
of security by a factor 5 to 10 for Keygen. For Signing, we gain 15% for basic security to a
factor 2 at 256-bits security level. In terms of rounds, our protocol uses 126 rounds for Keygen
and Lindell’s protocol uses 175 rounds, so we get a 28% gain. Both protocols use 7 rounds
for Signing. This situation can be explained by the fact that, even though we use less than
half the number of exponentiations in the key generation as we do not need a range proof,
and though we can use smaller parameters (cf. Section 2.6), the group law is more complex
in class groups (one multiplication in the group is slower). Consequently the key generation
for our solution only takes less time from the 192 bits level (while being of the same order of
magnitude below this level). For signing, we increase the cost by one exponentiation due to
the Elgamal structure of the HSM-CL-based PKE. However, we note that one can pre-process
this encryption by computing (gτq , hp

τ) in an offline phase and computing c1 ← (gτq , hp
τfk

−1
2 m′)

which results in only one multiplication in the online phase. As a result we would have only one
exponentiation in the online signing for the decryption operation. The same holds for Lindell’s
protocol with Paillier. With this improvement both protocols take the same time for signing
at the 192 bits level.

181

CHAPTER 5. DISTRIBUTING EC-DSA

Increasing the number of rounds to obtain a 2−60 soundness error. This impacts only
KeyGen, where both protocols use 40 iterations of ZKPs to achieve a 2−40 soundness error.
Lindell’s protocol performs 9 exponentiations per iteration while ours performs 4. Multiplying
all timings by 3/2 should reflect achieving a 2−60 soundness error, and indeed this is what we
observe in practice. Complexity is linear in the number of iterations and the ratio between our
timings and those of [Lin17a] remains constant.

5.3 Full Threshold EC-DSA
In this section we present new techniques to realise efficient threshold variants of the EC-
DSA signature scheme. Our resulting protocols are particularly efficient in terms of bandwidth
consumption and, as several recent works (e.g. [GG18,LN18,DKLs19,CMP20,GKSS20,GG20])
allow to consider any threshold t such that n t+ 1.

As mentioned previously, the difficulty when trying to devise a threshold variant of this
scheme comes from the fact that one has to compute both R = k−1P and a multiplication
of the two secret values k, x. The Gennaro and Goldfeder protocol [GG18] protocol addresses
this as follows. Starting from two secrets a = a1 + · · · + an, b = b1 + · · · + bn additively
shared among the parties (i.e. Pi holds ai and bi), players compute ab =

∑
i,j aibj by com-

puting additive shares of each aibj . This can be achieved via a simple two party protocol,
originally proposed by Gilboa [Gil99] in the setting of two party RSA key generation, which
parties execute in a pairwise way. Slightly more in detail, this latter protocol relies on linearly
homomorphic encryption and Gennaro and Goldfeder implement it using Paillier’s cryptosys-
tem as underlying building block. This choice, however, becomes problematic when dealing
with malicious adversaries, as Paillier plaintexts live in (Z/NZ) whereas EC-DSA signatures
live in Z/qZ. To avoid inconsistencies, one needs to choose N significantly larger than q, so
that no wrap arounds occur during the execution of the whole protocol. To prevent malicious
behaviour, this also induces the need of expensive range proofs.

We revisit the [GG18] protocol and propose a new threshold EC-DSA variant based on the
HSM-CL based encryption scheme Πhsm-cl (cf. Fig. 3.5). In our protocol the aforementioned
multiplication step can be done efficiently and without resorting to range proofs. We thus avoid
all the required range proofs, while retaining comparable overall (computational) efficiency.
Security – which does not degrade with the number of signatures queried by the adversary
in the tu-cma game (cf. Definition 5.3 – relies on the assumptions and tools introduced in
Chapter 3. As in many previous works on multiparty EC-DSA (e.g. [MR01, Lin17a, GG18]),
the linearly homomorphic properties of Πhsm-cl enables parties to perform operations collab-
oratively while keeping their inputs secret. To ensure no information leaks from this use of
the PKE, parties must prove their ciphertexts are ‘well formed’. To this end, we will use the
efficient ZKAoK of Fig. 3.9, which proves knowledge of the plaintext and of the randomness
used to compute a ciphertext for Πhsm-cl. In order to use this ZKAoK, we first introduce a slight
modification to the HSM-CL assumption in Section 5.3.1. Then in Section 5.3.2 we explain
how parties interactively set up the public parameters of Πhsm-cl. In Section 5.3.3 we present
our (t, n)-threshold EC-DSA signing protocol, whose security is demonstrated in Section 5.3.4.

We compare the speed and communication costs of our protocol to [GG18] and to that
of Lindell and Nof [LN18], these are the best performing pre-existing protocols using similar
construction techniques which achieve the same functionality. Our comparisons show that
for all considered security levels our signing protocol reduces the bandwidth consumption by
factors varying between 4.4 and 9, while key generation is consistently two times less expensive.
Moreover, we even outperform (for all security levels) the stripped down implementation of

182

CHAPTER 5. DISTRIBUTING EC-DSA

the [GG18] protocol where a number of range proofs are omitted5. We believe this to be an
important aspect of our schemes. In terms of timings, though for standard levels of security
our signing protocol is up to four times slower than that of [GG18], for higher levels of security
the trend is inverted: for 256-bit security we are twice as fast as all other secure schemes
considered6.

Remark. In this section, we start from a slightly different formulation of centralised EC-
DSA to that presented in Section 5.1.2. Namely in the Sign algorithm, one samples k ←↩
(Z/qZ)∗ and computes R← k−1P , while s is computed as k(m′ + rx). Since q is prime, both
formulations of the signing protocol are equivalent, however this slight syntactic modification
is more convenient for our method of distributing k in the full threshold protocol.

5.3.1 A Note on the Underlying Assumptions

In our full threshold protocol of Section 5.3.3, we use the zero-knowledge arguments of knowl-
edge of Section 3.7. These guarantee that parties honestly compute their ciphertexts, and
secures the protocol against malicious adversaries. As seen in Section 3.7, the soundness of
these ZKAoK relies on the SR and LO assumptions (cf. Section 3.2.4). Precisely, they require
that it be hard to compute roots of ĝq, where ĝq is a random power of the generator gq of Gq

output by Gen. This further requires a small modification to the Πhsm-cl encryption scheme
(of Fig. 3.5), in that one substitutes gq for ĝq throughout the scheme. Accordingly, for our
full threshold protocol we modify slightly the HSM-CL assumption by considering a random
element ĝq instead of using the somewhat deterministic generator gq of Gq.

Definition 5.11 (HSM-CL assumption). Let λ be a positive integer and let GenCL = (Gen,
Solve) be a generator for a group with an easy DL subgroup. Let D (resp. Dq) be a distribution
over the integers such that the distribution {gx, x ←↩ D} (resp. {gxq , x ←↩ Dq}) is at distance
less than δ(λ) from the uniform distribution in G (resp. in Gq), for some δ(λ) = negl(λ). Let
A be an adversary for the HSM-CL problem, its advantage is defined as:

Advhsm-cl
A (λ) def=

∣∣∣∣2 · Pr
[
b = b? : (s̃, f, gq, Ĝ, F)← Gen(1λ, q), t←↩ Dq, ĝq = gtq,

x←↩ D, x′ ←↩ Dq, b←↩ {0, 1}, Z0 ← gx, Z1 ← ĝx
′
q ,

b? ←A(q, s̃, f, gq, ĝq, Ĝ, F, Zb, Solve(.))
]
− 1

∣∣∣∣
The HSM-CL problem is δhsm-cl-hard for GenCL if for all PPT adversary A, Advhsm-cl

A (λ) 6
δhsm-cl(λ). We say the HSM-CL assumption holds for GenCL (or the HSM-CL problem is hard
for GenCL), if the HSM-CL problem is δhsm-cl-hard for GenCL and δhsm-cl(λ) = negl(λ).

Clearly instantiating the projective hash function Hhsm-cl (cf. running example 2) using ĝq
instead of gq does not change the properties proven for Hhsm-cl. Throughout this section, when
referring to Hhsm-cl, we implicitly mean that we use ĝq instead of gq. In particular, this variant
of Hhsm-cl satisfies the same smoothness and homomorphic properties as the original. Conse-
quently instantiating the linearly homomorphic PKE Πhsm-cl (cf. Fig. 3.5) using ĝq instead of
gq also yields an ind-cpa-secure PKE.

5As Gennaro and Goldfeder themselves point out in [GG18], omitting these proofs leaks information on the
shared signing key. While they conjecture that this information is limited enough for the protocol to remain
secure, no formal analysis is provided.
6But still twice as slow as the stripped down [GG18] protocol.

183

CHAPTER 5. DISTRIBUTING EC-DSA

In addition to the HSM-CL assumption, we use the LO assumption for Gen which states
that it is hard to find low order elements in the group Ĝ (cf. Definition 3.7); and the SR
assumption for class groups, which states that it is hard to find roots in Ĝ of random elements
of the subgroup 〈gq〉 (cf. Definition 3.8). These assumptions allow us to use the ZKAoK for REnc
of Fig. 3.9 which significantly increase the challenge space of our proofs (compared to ZKPoKs),
and thereby reduce the number of rounds in the protocol to achieve a satisfying soundness.
This yields improvements both in terms of bandwidth and of computational complexity.

5.3.2 Interactive Setup for the HSM-CL Based Encryption Scheme

We first explain how parties interactively set up the public parameters of the HSM-CL based
encryption scheme Πhsm-cl. This ensures all parties’ view of ĝq is that of a random element in
Gq, so that the assumptions underlying the ZKAoK for REnc of Fig. 3.9 hold. Though – for
clarity – we describe this interactive setup as a separate protocol, it can be done in parallel
to the IKeyGen protocol of threshold EC-DSA, thereby only increasing by one the number of
rounds of the threshold signing protocol.

Generating a random generator ĝq. As mentioned in the previous section, in order to use
the ZKAoK for REnc it must hold that ĝq is a random element of the subgroup 〈gq〉 where
ppCL := (s̃, g, f, gq, Ĝ, G, F,Gq) ← Gen(1λ, q). Precisely if a malicious prover P ∗ could break
the soundness of the ZKAoK, an adversary trying to break the SR problem, given input a
random ĝq, should be able to feed this input to P ∗, and use P ∗ to solve it’s own challenge.
Consequently, as the ZKAoK will be used peer-to-peer by all parties in the threshold EC-DSA
protocol, they will collaboratively generate – in the interactive IKeyGen – the public parameters
(s̃, f, gq, Ĝ, F), and a common ĝq which is random to each party. We call this interactive sub-
protocol ISetup, since it allows parties to collaboratively set up the public parameters for
Πhsm-cl. All parties then use this ĝq to compute their public keys and as a basis for Πhsm-cl.

In our instantiation from class groups described in Section 3.1.2, and in particular in our
description of the group generator Gen of Fig. 3.1, given the pair of primes q̃ and q, the
generation of the public parameters ppCL is somewhat deterministic. The only step which is
not obviously deterministic is step 5 of the algorithm of Fig. 3.1, where it is not specified
how one chooses the small prime r. This step can be made deterministic by initially setting
r to be a fixed small value, and then incrementing r until it satisfies the required conditions
(this takes polynomial time under the generalised Riemann hypothesis). Let us overload the
notation ppCL ← Gen(q̃, q) to refer to this deterministic setup.

We note that in the generation of ppCL described in Fig. 3.1, the prime q̃ is produced using
an algorithm next-prime, which on input a random seed r ∈ N and a prime q, returns the next
prime greater than r satisfying qq̃ ≡ −1 (mod 4) and (q/q̃) = −1.

We first define the functionality computed by ISetup, running in two steps.

Definition 5.12. For a number of parties n, and an integer A, ISetup consists of the following
interactive protocols:

Step 1 〈(1k, q)〉 → 〈q̃〉 or 〈⊥〉 where ⊥ is the error output, signifying the parties may abort
the protocol, and q̃ is a k bit prime which is produced as prescribed in algorithm
Gen(1k, q) of Fig. 3.1.

Step 2 〈(q̃, q)〉 → 〈(s̃, f, gq, Ĝ, F, ĝq)〉 or 〈⊥〉 where (s̃, g, f, gq, Ĝ, G, F,Gq)← Gen(q̃, q); and
denoting Dq a distribution as per Definition 5.11, ĝq is computed as t←↩ Dq, ĝq ← gtq.

Let us now describe our protocol instantiating ISetup of Definition 5.12. Let λ be a positive
integer. Let Dq be a distribution over the integers such that the distribution {gxq , x←↩ Dq} is

184

CHAPTER 5. DISTRIBUTING EC-DSA

Pi ISetup(1k, q) All players {Pj}j 6=i
ri ←↩ {0, 1}k

[ci, di]← Com(ri)
ci=====⇒
di=====⇒ ri ← Open(ci, di)

q̃ ← next-prime(
⊕n
j=1 rj , q)

Compute gq from q, q̃
ti ←↩ Dq and gi ← gtiq

(c̃i, d̃i)← Com(gi)
c̃i=====⇒
d̃i=====⇒ gi ← Open(c̃i, d̃i)

πi := ZKPoKgi{(ti) : gi = gtiq }
πi←−−−→ if a proof fails abort

ĝq ←
∏n
j=1 g

tj
q =

∏n
j=1 gj

Figure 5.8: Threshold CL setup used in IKeyGen

at distance less than δ(λ) from the uniform distribution in Gq for some δ(λ) = negl(λ). For n
parties to jointly run ISetup, they proceed as depicted in Fig. 5.8, i.e. performing the following
steps:

Step 1 — Generation of public prime q̃ of bit-size k.

1. Each Pi samples a random ri ←↩ {0, 1}k, computes (ci, di)← Com(ri) and broadcasts ci.

2. After receiving {cj}j 6=i, each Pi broadcasts di thus revealing ri.

3. All players compute the common output q̃ ← next-prime(
⊕n

j=1 rj , q).

Step 2 — Generation of ĝq.

1. From q̃, and the order q of the EC, all parties can use the deterministic algorithm
Gen(q̃, q) to compute the deterministic generator gq.

2. Next each player Pi performs the following steps:

(a) Sample a random ti ←↩ Dq; compute gi ← gtiq ; (c̃i, d̃i)← Com(gi), and broadcast c̃i.

(b) Receive {c̃j}j 6=i. Broadcast d̃i thus revealing gi.

(c) Perform a ZKPoK of ti such that gi = gtiq . If a proof fails, abort.

3. Each party Pi computes ĝq :=
∏n
j=1 gj = g

∑
tj

q , and has output (s̃, f, gq, Ĝ, F, ĝq).

Theorem 5.13 states the security of the interactive protocol ISetup of Fig. 5.8.

Theorem 5.13. If the commitment scheme is non-malleable and equivocal; and the proofs
πi are zero knowledge proofs of knowledge of discrete logarithm in 〈gq〉, then the protocol
of Fig. 5.8 securely computes ISetup with abort, in the presence of a malicious adversary
corrupting any t < n parties, with point-to-point channels.

Proof. We describe a simulator S simulating P1 against all the other (potentially corrupted)
parties, since all parties play symmetric roles, this is without loss of generality. S gets as input

185

CHAPTER 5. DISTRIBUTING EC-DSA

q̃ from the first step of the ideal functionality, and upon calling step 2 of ISetup with primes
(q̃, q), it receives s̃, f, gq, Ĝ, F, ĝq and some t ∈ Z.

S must simulate Step 1 so that all players output this same q̃. Next S must simulate Step
2 so that each player Pi outputs s̃, f, gq, Ĝ, F, ĝq.

Simulating step 1 — Generation of q̃.

1. S samples r1 ←↩ {0, 1}k, computes (c1, d1)← Com(r1) and broadcasts c1.

2. S broadcasts d1, revealing r1, and receives {rj}j>1.

3. S samples r′1 uniformly at random in {0, 1}k, subject to the condition q̃ = next-prime(r′1⊕⊕n
j=2 rj , q). Then S computes an equivocated decommitment d′1 which opens to r′1,

rewinds the adversary to 2 and broadcasts d′1 instead of d1.

4. All players compute the common output q̃ ← next-prime(r′1 ⊕
⊕n

j=2 rj , q).

Simulating step 2 — Generation of ĝq.

1. From q̃ and q all parties use Gen(q̃, q) to compute the deterministic generator gq.

2. S (simulating P1) does the following:

(a) Sample t1 ←↩ Dq; compute g1 ← gt1q ; (c̃1, d̃1) = Com(g1), and broadcast c̃1.

(b) Receive {c̃j}j 6=1. Broadcast d̃1 thus revealing g1.

(c) Perform a ZKPoK for π1 := ZKPoKg1{t1 : g1 = gt1q }.

(d) Receive {c̃j}j 6=1, recover gj ← Open(c̃j , d̃j) for each j.

(e) Compute h←
∏n
j=2 gj ; g

′
1 ← ĝq ·h−1; and an equivocated decommitment d′ opening

to g′1, rewind the adversary to 2. (b) and broadcast d′ instead of d̃1. In 2. (c) simulate
the ZKPoK.

3. If all proofs are correct, the protocol goes along with ← g′1h = ĝq.

Let us now demonstrate that if the commitment scheme is non-malleable and equivocal; and
the proofs πi are zero knowledge proofs of knowledge then a simulated execution of steps 1 and
2 above is – from the view of (potentially corrupted) parties P2, . . . , Pn – indistinguishable from
a real execution. Moreover when the simulation – on input (ppCL, ĝq), where ppCL is computed
deterministically from primes q̃ and q – does not abort, all parties output q̃ in step 1, and ĝq
in step 2.

Step 1: The only difference between real and simulated protocols is the way r1 is computed. In
the simulation S does not know r1, but it chooses a r′1 such that q̃ = next-prime(r′1⊕

⊕n
j=2 rj , q).

Let R =
⊕n
j=2 rj and Hq = {x ∈ {0, 1}k : prev-prime(q̃) ¬ x⊕R ¬ q̃ − 1} be the set of all the

elements x such that q̃ = next-prime(x⊕R, q). Since r1 belongs to the set Hq, and it has been
chosen uniformly at random, as long as r′1 is chosen uniformly at random in the same set, the
real and simulated executions are indistinguishable.

Step 2: The only difference is in point 2. (e), where S computes g′1 instead of using g1. Since g1

and ĝq · h−1 follow the same distribution, real and simulated executions are indistinguishable.
Moreover, we observe that the simulation can fail in three points: in step 1 if someone

refuses to decommit after rewinding and in step 2, if some πi fails or if someone refuses to
decommit after rewinding. Since the commitment scheme is non-malleable and equivocal, in
Step 1 S can rewind and equivocate the commitment to r1, and if there are no aborts, all

186

CHAPTER 5. DISTRIBUTING EC-DSA

parties decommit to their correct values. As a consequence, all parties output q̃ at the end of
Step 1. In step 2, all parties compute the correct gq using q̃ from the deterministic Gen(q̃, q), if
not there is an abort caused by the soundness of the proof πi corresponding to the corrupted
Pi. Finally, if no abort has occurred, in 2. (e), then S can equivocate the decommitment to g1

and all parties decommit to the correct values thanks to the non-malleability of the scheme. If
no party refuses to decommit after rewinding, the protocol ends with ĝq (and q̃ from step 1).

Thus the simulation is indistinguishable from a real execution of the protocol from the
adversary’s view, which concludes proof of Theorem 5.13.

Remark. Given the simulator described in proof of Theorem 5.13, it is clear that for each
execution of ISetup (cf. Fig. 5.8), which interactively sets the public parameters of the CL
framework, our reduction for the SR problem can program the outputs q̃ and ĝq if the reduction
controls at least one uncorrupted player.

Indeed consider an adversary A for the SR problem for generator Gen. A gets as input a
description of ppCL output by Gen(1λ, q), which includes q̃ and the order q of the EC, and a
random element Y ∈ Gq. Now all A needs to do is perform the same steps as S in proof of
Theorem 5.13, substituting ĝq for Y .

Remark. The randomness of q̃ is not crucial to the security of the EC-DSA protocol: con-
versely to RSA prime factors, here q̃ is public. Indeed in our ISetup algorithm, the output of
next-prime is biased, but it allows for an efficient solution.

Instantiating the proofs πi. In Step 2. 2.(c) of the ISetup protocol, each Pi computes
πi ← ZKPoKgi {(ti) : gi = gtiq }. In fact it suffices for them to compute ZKPoKgi{(zi) : gyi = gziq },
where y ← lcm(1, 2, 3, . . . , 210) using the lcm trick of Section 3.6.2. Then in Step 2.3. all players
compute ĝq ← (

∏n
j=1 gj)

y. The resulting ĝq has the required properties to be plugged into the
IKeyGen protocol. We use this modified interactive setup for our efficiency comparisons of
Section 5.3.5.

5.3.3 Full Threshold EC-DSA Protocol

We now describe the overall (t, n)-threshold EC-DSA protocol. Participants run on input
(G, q, P) used by the EC-DSA signature scheme. In Fig. 5.9, and in phases 1, 3, 4, 5 of
Fig. 5.10, all players perform the same operations (on their respective inputs) w.r.t. all other
parties, so we only describe the actions of some party Pi. In particular if Pi broadcasts some
value vi, implicitly Pi receives vj broadcast by Pj for all j ∈ [n], j 6= i. Broadcasts from Pi
to all other players are denoted by double arrows, whereas peer-to-peer communications are
denoted by single arrows. Conversely Phase 2 of Fig. 5.10 is performed by all pairs of players
{(Pi, Pj)}i 6=j . Each player will thus perform (n − 1) times the set of instructions on the left
(performed by Pi on the figure) and (n− 1) times those on the right (performed by Pj).

Key generation.

We assume that prior to the interactive key generation protocol IKeyGen, all parties run the
ISetup protocol of Fig. 5.8 at the outcome of which they all output a common random generator
ĝq. We denote by Πhsm-cl = (KeyGenhsm-cl,Enchsm-cl,Dechsm-cl) the HSM-CL-based PKE of
Fig. 3.5. Each party uses ĝq to generate its’ encryption key pair, and to verify the ZKAoK in
the ISign protocol. In practice IKeyGen and ISetup can be ran in parallel, this increases the
number of rounds in IKeyGen by 1 broadcast per party if the ZKPs are made non interactive,
and by 2 broadcasts if it is performed interactively between players. The IKeyGen protocol
(also depicted in Fig. 5.9) proceeds as follows:

187

CHAPTER 5. DISTRIBUTING EC-DSA

Pi IKeyGen(G, P, q) All players {Pj}j 6=i
ui ←↩ Z/qZ

[kgci, kgdi]← Com(uiP)

(ski, pki)← KeyGenhsm-cl(1
λ)

pki and kgci========⇒
kgdi===⇒

Perform (t, n)-VSS share of ui: Qi ← Open(kgci, kgdi)
pi(X) = ui +

∑t
k=1 ai,kX

k mod q
Denote {σi,j := pi(j)}j∈[n] Q =

∑n
i=1Qi

and {Vi,k := ai,kP}k∈[t]
Send σi,j to Pj−−−−−−−−−→
{Vi,k}k∈[t]
=======⇒

{σk,i}k are additive shares of xi :=
∑
k∈[n] pk(i)

where {xi}i∈[n] are (t, n) Shamir shares of x.

πkg,i := ZKPoKXi{(xi) : Xi = xiP}
πkg,i←−→

Figure 5.9: Threshold Key Generation

1. Each Pi samples a random ui ←↩ Z/qZ; computes [kgci, kgdi]← Com(uiP) and generates
a pair of keys (ski, pki) for Πhsm-cl. Each Pi broadcasts (pki, kgci).

2. Each Pi broadcasts kgdi. Let Qi ← Open(kgci, kgdi). The EC-DSA public key is set to
Q←

∑n
i=1Qi. Party Pi performs a (t, n) Feldman-VSS of ui, with Qi as the free term in

the exponent. Each player adds the private shares received during the n Feldman VSS
protocols. The resulting values xi are a (t, n) Shamir secret sharing of the signing key x.
Observe that all parties know {Xi := xiP}i∈[n].

3. Each Pi proves in ZK that it knows xi using Schnorr’s protocol [Sch91].

Signing.

The signature generation protocol runs on input m and the output of the IKeyGen protocol
of Fig. 5.9. We denote S ⊆ [n] the subset of players which collaborate to sign m. Assuming
|S| = t one can convert the (t, n) shares {xi}i∈[n] of x into (t, t) shares {wi}i∈S of x using the
appropriate Lagrangian coefficients. Since the Xi = xiP and Lagrangian coefficients are public
values, all parties can compute {Wi := wiP}i∈S . After a brief discussion on the parameters
required to securely instantiate the protocol, we describe the steps of the algorithm. A global
view of the interactions is also provided in Fig. 5.10.

Setting the parameters. Note that in Phase 1 of the signature protocol, we use the ZKAoK
for relation REnc of Fig. 3.9. As explained in Section 3.7, if secret values are sampled from
Dq = DZ,σ′ for σ′ = s̃

√
λ (as prescribed for the Πhsm-cl encryption scheme, cf. Section 3.5.3),

then with overwhelming probability, these exponents live in the set {−10s̃
√
λ, . . . , 10s̃

√
λ}. We

assume this is the case. Let us denote C the size of the challenge set used for the ZKAoK for
REnc of Fig. 3.9. According to Theorem 3.31, we thus set the bound A ∈ N of Fig. 5.10 to
be an integer such that 10s̃

√
λC/A is a negligible function of the security parameter λ. This

ensures that the ZKAoK is indeed zero-knowledge.

Steps of the signing protocol.

188

CHAPTER 5. DISTRIBUTING EC-DSA

Pi Phase 1 All players {Pj}j 6=i
ki, γi ←↩ Z/qZ

ri ←↩ {1, . . . , A− 1}
cki ← Enc(pki, ki; ri)
[ci, di]← Com(γiP)

ci,cki===⇒ if a proof fails, abort

πi := ZKAoKpki,cki{(ki, ri) : πi←−−−→
((pki, cki); (ki, ri)) ∈ REnc}

Pi Phase 2 Pj
βj,i, νj,i ←↩ Z/qZ
Bj,i ← νj,i · P

cβj,i ← Enc(pkj ,−βj,i)
cνj,i ← Enc(pkj ,−νj,i)

ckjγi ← EvalAdd(EvalScal(ckj , γi), cβj,i)

ckjwi ← EvalAdd(EvalScal(ckj , wi), cνj,i)
ckjγi ,ckjwi ,Bj,i−−−−−−−−−−→

αj,i ← Dec(skj , ckjγi)
µj,i ← Dec(skj , ckjwi)

If µj,iP +Bj,i 6= kjWi then abort
δi ← kiγi +

∑
j 6=i(αi,j + βj,i)

σi ← kiwi +
∑
j 6=i(µi,j + νj,i)

Pi Phase 3 All players {Pj}j 6=i
δi=====⇒ δ =

∑
i∈S δi = kγ

Pi Phase 4 All players {Pj}j 6=i
di=====⇒ Γi ← Open(ci, di)

πγi := ZKPoKΓi{(γi) : Γi = γiP}
πγi←−−−−→ if a proof fails, abort

R← δ−1(
∑
i∈S Γi)

let R = (rx, ry) and r ← rx mod q.
Pi Phase 5 All players {Pj}j 6=i

si ← mki + rσi
`i, ρi ←↩ Z/qZ

Vi ← siR+ `iP and Ai ← ρiP

[ĉi, d̂i]← Com(Vi, Ai)
ĉi=====⇒

π̂i := ZKPoK(Vi,Ai){(si, `i, ρi) : d̂i=====⇒
Vi = siR+ `iP ∧Ai = ρiP}

π̂i←−−−→ if a proof fails, abort
V ← −mP − rQ+

∑
i∈S Vi

Ui ← ρiV and Ti ← `iA and A←
∑
i∈S Ai

[c̃i, d̃i]← Com(Ui, Ti)
c̃i=====⇒
d̃i=====⇒ if

∑
i∈S Ti 6=

∑
i∈S Ui then abort.

si=====⇒ s←
∑
i∈S si,

if (r, s) is not a valid signature, abort,
else return (r, s).

Figure 5.10: Threshold signature protocol

189

CHAPTER 5. DISTRIBUTING EC-DSA

Phase 1: Each party Pi samples ki, γi ←↩ Z/qZ and ri ←↩ {1, . . . , A − 1} uniformly at random.
It computes cki ← Enc(pki, ki; ri), a ZKAoK πi that the ciphertext is well formed, and
[ci, di]← Com(γiP). Each Pi broadcasts (ci, cki , πi).

Phase 2: Intuition: denoting k :=
∑
i∈S ki and γ :=

∑
i∈S γi it holds that kγ =

∑
i,j∈S kjγi and

kx =
∑
i,j∈S kjwi. The aim of Phase 2 is to convert the multiplicative shares kj and γi

of kjγi (resp. kj and wi of kjwi) into additive shares αj,i +βj,i = kjγi (resp. µj,i + νj,i =
kjwi). Phase 2 is performed peer-to-peer between each pair {(Pi, Pj)}i 6=j, so that at the
end of the phase 2 Pi knows {αi,j , βj,i, µi,j , νj,i}j∈S,j 6=i.
Each peer-to-peer interaction proceeds as follows:

(a) Pi samples βj,i, νj,i ←↩ Z/qZ, and computes Bj,i ← νj,i ·P . It uses the homomorphic
properties of Πhsm-cl and the ciphertext ckj broadcast by Pj in Phase 1 to compute
ckjγi and ckjwi : encryptions under pkj of kjγi − βj,i and kjwi − νj,i respectively.

(b) Pi sends (ckjγi , ckjwi , Bj,i) to Pj , who decrypts both ciphertexts to recover respec-
tively αj,i and µj,i. If a decryption fails, Pj aborts.

(c) Since Wi is public, Pj verifies that Pi used the same share wi as that used to compute
the public key Q by checking µj,i · P +Bj,i = kjWi. If the check fails, Pj aborts.

Pi computes δi ← kiγi +
∑
j 6=i(αi,j + βj,i) and σi ← kiwi +

∑
j 6=i(µi,j + νj,i).

Phase 3: Each Pi broadcasts δi. All players compute δ ←
∑
i∈S δi.

Phase 4: (a) Each Pi broadcasts di which decommits to Γi.

(b) Each Pi proves knowledge of γi s.t. Γi = γiP . All players compute R← δ−1(
∑
i∈S Γi)

= k−1 · P . Let R = (rx, ry) and r ← rx mod q.

Phase 5: (a) Each Pi computes si = kim + σir, samples `i, ρi ←↩ Z/qZ uniformly at random,
computes Vi ← siR+`iP ; Ai ← ρiP ; and [ĉi, d̂i]← Com(Vi, Ai). Each Pi broadcasts
ĉi.

(b) Each party Pi decommits by broadcasting d̂i along with a NIZKPoK of (si, `i, ρi)
s.t. (Vi = siR+ `iP)∧ (Ai = ρiP). It checks all the proofs it gets from other parties.
If a proof fails Pi aborts.

(c) All parties compute V ← −mP − rQ +
∑
i∈S Vi, A ←

∑
i∈S Ai. Each party Pi

computes Ui ← ρiV , Ti ← `iA and the commitment [c̃i, d̃i] ← Com(Ui, Ti). It then
broadcasts c̃i.

(d) Each Pi decommits to (Ui, Ti) by broadcasting d̃i.

(e) All players check
∑
i∈S Ti =

∑
i∈S Ai. If the check fails they abort.

(f) Each Pi broadcasts si s.t. all players can compute s ←
∑
i∈S si. They check that

(r, s) is a valid EC-DSA signature, if so, they output (r, s), otherwise they abort
the protocol.

5.3.4 Security

The security proof is a reduction to the unforgeability of standard EC-DSA. We demonstrate
that if there exists a PPT algorithm A which breaks the threshold EC-DSA protocol of
Figs. 5.9 and 5.10, then we can construct a forger F which uses A to break the unforgeability
of standard EC-DSA. To this end F must simulate the environment of A, so that A’s view
of its interactions with F are indistinguishable from A’s view in a real execution of the

190

CHAPTER 5. DISTRIBUTING EC-DSA

protocol. Precisely, we show that if an adversary A corrupts {Pj}j>1, one can construct a
forger F simulating P1 s.t. the output distribution of F is indistinguishable from A’s view in
an interaction with an honest party P1 (all players play symmetric roles in the protocol so it
is sufficient to provide a simulation for P1). F gets as input an EC-DSA public key Q, and has
access to a signing oracle for messages of its choice. After this query phase, F must output
a forgery, i.e. a signature σ for a message m of its choice, which it did not receive from the
oracle.

Simulating the key generation protocol

On input a public key Q := xP , the forger F must set up in its simulation with A this same
public key Q (without knowing x). This will allow F to subsequently simulate interactively
signing messages with A, using the output of its’ (standard) EC-DSA signing oracle. The
main differences with the proof of [GG18] arise from the fact F knows it’s own decryption key
sk1, but does not extract that of other players. As in our two party protocol, we use the PKE
Πhsm-cl which results from the Hhsm-cl projective hash function, whose security is statistical,
thus the fact F uses its’ secret key does not compromise security, and we can still reduce the
security of the protocol to the smoothness of Hhsm-cl. However as we do not prove knowledge
of secret keys associated to public keys in the key generation protocol, F can not extract the
decryption keys of corrupted players. The simulation is described in Fig. 5.11.

Simulating the signature generation

On input m, F must simulate the ISign protocol from A’s view.
First observe that since, in its simulation, F never simulates the ZKAoK for REnc, it is

sufficient that the argument of knowledge be honest verifier zero knowledge for our purposes.
Indeed, the argument is only used in Phase 1 of the protocol, and F knows the value k1 for
which it is proving knowledge.

We let
k̃i := Dec(ski, cki),

which F can extract from the proof πi performed in Phase 1, and

k̃ :=
∑
i∈S

k̃i.

We further denote:

k ∈ Z/qZ the value satisfying R = k−1P in Phase 4 of the signing protocol.

Notice that if any of the players mess up the computation of R by revealing wrong shares
δi, we may have k 6= k̃ mod q. As in [GG18], we distinguish two types of executions of the
protocol:

an execution where k̃ = k mod q is said to be semi-correct,
whereas

an execution where k̃ 6= k mod q is non semi-correct.

Both executions will be simulated differently. At the end of Phase 4, when both simulations
diverge, F knows k and k̃, so it can detect if it is in a semi-correct execution or not and chose
how to simulate P1.

We point out that F does not know the secret share w1 of x associated with P1, but it
knows the shares {wj}j∈S,j 6=1 of all the other players. Indeed F can compute these from the

191

CHAPTER 5. DISTRIBUTING EC-DSA

1. F receives a public key Q from it’s EC-DSA challenger.

2. Repeat the following steps (by rewinding A) until A sends correct decommitments
for P2, . . . , Pn on both iterations.

3. F selects a random value u1 ∈ Z/qZ, computes [kgc1, kgd1] ← Com(u1P) and broad-
casts kgc1. F receives {kgcj}j∈[n],j 6=1.

4. F broadcasts kgd1 and receives {kgdj}j∈[n],j 6=1. For i ∈ [n], let Qi ← Open(kgci, kgdi)
be the revealed commitment value of each party. Each player performs a (t, n) Feldman-
VSS of the value Qi, with Qi as the free term in the exponent.

5. F samples a Πhsm-cl key pair (pk1, sk1)←↩ KeyGen(1λ).

6. F broadcasts pk1 and receives the public keys {pkj}j∈[n],j 6=1.

7. F rewinds A to the decommitment step and

• equivocates P1’s commitment to k̂gd which opens to Q̂1 ← Q−
∑n
j=2Qj .

• simulates the Feldman-VSS with free term Q̂1.

8. A broadcasts the decommitments {k̂gdj}j∈[n],j 6=1. Let {Q̂j}j=2...n be the committed
values revealed by A at this point (which could be ⊥ if A refuses to decommit).

9. All players compute the verification key Q̂←
∑n
i=1 Q̂i. If any Q̂i = ⊥ then Q̂← ⊥.

10. Each player Pi adds the private shares it received during the n Feldman VSS protocols
to obtain xi (the {xi}i∈[n] are a (t, n) Shamir secret sharing of the secret key x =

∑
i ui).

Note that due to the free term in the exponent, the values Xi = xiP are public.

11. F simulates the ZKPoK that it knows x1 corresponding to X1. For j ∈ [n], j 6= 1, F
receives from A a ZKPoK of xj such that Xj = xj · P , from which F can extract the
values {xj}j∈[n],j 6=1.

Figure 5.11: Simulating P1 in IKeyGen

values {xj}j∈[n],j 6=1 extracted during key generation. It also knows W1 = w1P from the key
generation protocol. Moreover F knows the encryption keys {pkj}j∈S of all players, and it’s
own decryption key sk1.

In the simulation, depicted in Fig. 5.11, F aborts whenever A refuses to decommit any of
the committed values, fails a ZK proof, if a decryption fails, or if the signature (r, s) does not
verify.

Simulating a semi-correct execution

Lemma 5.14. Let C denote the size of the challenge space used in the ZKAoK for REnc.
Assuming the SR assumption and the LOC assumption hold for GenCL; SMhsm-cl is δhsm-cl-
hard; Hhsm-cl is smooth; and the commitment scheme is non-malleable and equivocal; then on
input m the simulation either outputs a valid signature (r, s) or aborts, and is computationally
indistinguishable from a semi-correct real execution.

192

CHAPTER 5. DISTRIBUTING EC-DSA

Phase 1:

As in a real execution, F samples k1, γ1 ←↩ Z/qZ and r1 ←↩ {1, . . . , A − 1}
uniformly at random. It computes ck1 ← Enc(pk1, k1; r1), the associated
ZKAoK π1, and [c1, d1]← Com(γ1P). It broadcasts (c1, ck1 , π1) before receiving
{cj , ckj , πj}j∈S,j 6=1. F checks the proofs are valid and extracts the encrypted
values {kj}j∈S,j 6=1 from which it computes k̃ ←

∑
i∈S ki.

Phase 2:

(a) For j ∈ S, j 6= 1, F computes βj,1, ckjγ1 as in a real execution. However since
it only knows W1 = w1P (but not w1), it samples a random µj,1 ←↩ Z/qZ
and sets ckjw1 ← Enc(pkj , µj,1), and Bj,1 ← kj ·W1 − µj,1 · P . Then F sends
(ckjγ1 , ckjw1 , Bj,1) to Pj .

(b) When F receives (ck1γi , ck1wj , B1,j) from Pj it decrypts as in a real execution
of the protocol to obtain α1,j and µ1,j

(c) F verifies that µ1,jP + B1,j = k1Wj . If so, since F also knows k1 and wj , it
computes ν1,j ← k1wj − µ1,j mod q

F computes δ1 ← k1γ1 +
∑
k 6=1 α1,k +

∑
k 6=1 βk,1. Even though F cannot compute σ1

(since it does not know w1), it can compute :∑
i>1

σi =
∑
i>1

(kiwi +
∑
j 6=i

µi,j + νj,i)

=
∑
i>1

∑
j 6=i

(µi,j + νj,i) +
∑
i>1

kiwi =
∑
i>1

(µi,1 + ν1,i) +
∑

i>1;j>1

kiwj

since it knows all the values {kj}j∈S , {wj}j∈S,j 6=1, it chooses the random values µi,1
and it can compute all of the shares ν1,j = k1wj − µ1,j mod q.

Phase 3:

cF broadcasts δ1 and receives all the {δj}j∈S,j 6=1 from A. Let δ ←
∑
i∈S δi.

Phase 4:

(a) F broadcasts d1 which opens to Γ1, and A reveals {dj}j∈S,j 6=1 which open to
{Γj}j∈S,j>1.

(b) F proves knowledge of γ1 s.t. Γ1 = γ1P . For j ∈ S, j 6= 1, F receives the
ZKPoK πγj from which it extracts γj . Then F computes γ ←

∑
i∈S γi mod q

and k ← δ · γ−1 mod q.

193

CHAPTER 5. DISTRIBUTING EC-DSA

(c) If k = k̃ mod q (semi-correct execution), F proceeds as follows:

• F requests a signature (r, s) for m from its EC-DSA signing oracle.
• F computes R← s−1(mP+rQ) ∈ G (where r = rx mod q for R = (rx, ry)).
• F rewinds A to the decommitment step at Phase 4. (a) and equivocates
P1’s commitment to open to Γ̂1 ← δR −

∑
i>1 Γi. It also simulates the

ZKPoK of γ̂1 satisfying Γ̂1 = γ̂1P . Note that δ−1(Γ̂1 +
∑
i>1 Γi) = R.

Phase 5: Now F knows
∑
j∈S,j 6=1 sj held by A since sj = kjm+ σjr.

– F computes s1 held by P1 as s1 ← s−
∑
j∈S,j 6=1 sj .

– F continues the steps of Phase 5 as in a real execution.

(d) Else k 6= k̃ mod q (non-semi-correct execution), and F proceeds as follows:

• F computes R← δ−1(
∑
i∈S Γi) = k ·P . Let R = (rx, ry) and r ← rx mod q.

• in Phase 5, F does the following:
– sample s1, `1, ρ1 ←↩ Z/qZ, let V1 ← s1R + `1P ; A1 ← ρ1P ; [ĉ1, d̂1] ←
Com(V1, A1) and broadcast ĉ1;

– receive {ĉj}j 6=1 and broadcast d̂1. Prove knowledge of (s1, `1, ρ1) satis-
fying V1 = s1R+ `1P and A1 = ρ1P ;

– for j ∈ S, j 6= 1, receive d̂j and the ZKPoK π̂i of (sj , `j , ρj) relative to
Vj and Aj ;

– let V ← −mP − rQ +
∑
i∈S Vi; A ←

∑
i∈S A1; T1 ← `1A and sample

U1 ←↩ G;
– let [c̃1, d̃1] ← Com(U1, T1) and broadcast c̃1. Upon receiving {c̃j}j 6=1

from A, broadcast d̃1 and receive the {d̃j}j 6=1;
– now since

∑
i∈S T1 6=

∑
i∈S U1 both A and F abort.

Figure 5.11: Simulating P1 in ISign

Proof. The differences between the real and simulated views are the following:

1. F does not know w1. So for j > 1 it cannot compute ckjw1 as in a real execution of
the protocol. However under the SR and the LOC assumptions, F can extract kj from
proof πj in Phase 1. It then samples µj,1 ←↩ Z/qZ, computes Bj,1 ← kjW1 − µj,1P , and
ckjw1 ← Enc(pkj , µj,1). The resulting view of A is identical to an honestly generated
one since both in real and simulated executions µj,1 follows the distribution U(Z/qZ),
while Bj,1 follows the uniform distribution in G and passes the check Bj,1 + µj,1P =
kjW1 performed by A. Moreover ckj was proven to be a valid ciphertext, so ciphertexts
computed using homomorphic operations over ckj and fresh ciphertexts computed with
pkj follow identical distributions from A’s view.

2. F computes Γ̂1 ← δ ·R−
∑
i>1 Γi, and equivocates its commitment c1 so that d1 opens to

Γ̂1. Let us denote γ̂1 ∈ Z/qZ the value satisfying Γ̂1 = γ̂1P . Here γ̂1 is unknown to F, but
F can simulate a ZKPoK of γ̂1. Let us further denote k̂ ∈ Z/qZ the randomness (unknown
to F) used by its’ signing oracle to produce (r, s). It holds that δ = k̂(γ̂1 +

∑
j∈S,j>1 γj).

Finally, let us denote k̂1 := k̂ −
∑
j∈S,j>1 kj . Since δ was made public in Phase 3, by

194

CHAPTER 5. DISTRIBUTING EC-DSA

opening to Γ̂1 = γ̂1P instead of Γ1 = γ1P , F is implicitly using k̂1 6= k1, even though A

received an encryption of k1 in Phase 1. As we shall see the smoothness of Hhsm-cl and the
hardness of the SMhsm-cl subset membership problem ensure this change is unnoticeable
to A.

Claim. If Hhsm-cl is δs-smooth, and SMhsm-cl is δhsm-cl-hard, then no PPT adversary A

– interacting with F – can notice the value of k1 in the computation of R being replaced
by the (implicit) value k̂ with probability greater than 2δhsm-cl + 3/q + 4δs.

Proof. To see this consider the following sequence of games. We denote Ei the probability
A outputs 1 in Gamei. The technique here is similar to that of proof of Theorem 5.8,
when considering a corrupted P2 and S simulated P1.

Game0 to Game1. F uses the secret key sk1 instead of the public key pk1 and r1 to
compute ck1 ← (u1, u

sk1
1 fk1) where u1 = gr1q . Both games are perfectly indistinguishable

from A’s view:
|Pr[E1]− Pr[E0]| = 0.

Game1 to Game2. In Game2 one replaces the first element of ck1 (in Game1 this is u1 ∈ Gq)
with ũ1 ∈ G\Gq. There exist unique r1 ∈ Z/sZ and b1 ∈ Z/qZ such that, denoting
ck1 = (ũ1, ũ

sk1
1 fk1), one has ũ1 = gr1q f

b1 . Under the δhsm-cl-hardness of SMhsm-cl it holds
that:

|Pr[E2]− Pr[E1]| 6 δhsm-cl.

Game2 to Game3. In Game3 the points Q = xP and R = k̂−1P come from the EC-DSA
oracle, while in Game2 they are computed as in the real protocol. As a result, the value
k1 encrypted in ck1 is unrelated to k̂. Let us denote k̂1 := k̂ −

∑
j>1 kj , this is the value

which – if used by F instead of k1 – would lead to the joint computation of R = k̂−1P .

To demonstrate that Game2 and Game3 are indistinguishable from A’s view, we proceed
similarly to as in proof of Theorem 5.8 (where we were also arguing the indistinguisha-
bility of Game2 and Game3). Indeed, we again observe that for a given public key, there
are in fact q possible different secret keys. Given an invalid ciphertext, and the value
z ∈ Z/qZ to which it should decrypt, one fixes the value of the secret key (since it must
be the secret key which decrypts to z). However if one only knows the public key, this
invalid ciphertext could potentially encrypt any value in Z/qZ. The main difference here
compared to proof of Theorem 5.8 is that the adversary does not – prior to seeing the
invalid ciphertext – have any auxiliary information on the encrypted value (recall that
in proof of Theorem 5.8, the adversary also knew the elliptic curve point Q satisfying
Q = zP). Hence in this proof we need not rely on the DE assumption.

Hence, as in proof of Theorem 5.8, we start by considering a fixed ŝk1 ∈ Z satisfying the
following equations: {

ŝk1 = sk1 mod $,

ŝk1 = sk1 + b1
−1(k1 − k̂1) mod q.

Note that the smoothness of Hhsm-cl over G on F ensures that such a ŝk1 exists (it is not
necessarily unique). We can now see that in Game3, ck1 is an invalid encryption of both
k̂1 and k1, for respective secret keys ŝk1 and sk1, but for the same public key pk1, indeed:

ck1 = (ũ1, ũ
sk1
1 fk1) = (gr1q f

b1 , (gr1q f
b1)sk1 · fk1) = (gr1q f

b1 , (gsk1q)r1 · fk1+b1sk1)

= (gr1q f
b1 , (gŝk1q)r1f k̂1+ŝk1·b1) = (ũ1, ũ

ŝk1
1 f k̂1)

195

CHAPTER 5. DISTRIBUTING EC-DSA

A receives the point Q, the public key pk1 = gsk1q , and ck1 from F (at this point A’s view
is identical to its view in Game2). The adversary A corrupting Pj then computes ck1γj and
ck1wj . To simplify notations we denote cα := (uα, eα) = ck1γj and cµ := (uµ, eµ) = ck1wj .
A then sends cα and cµ to F. The difference between Game2 and Game3 appears now
in how F attempts to decrypt cα and cµ. In Game2 it would have used ŝk1, whereas in
Game3 it uses sk1.

Notation. We denote α (resp. µ) the random variable obtained by decrypting cα (resp.
cµ) (received in Game3) with decryption key sk1; we denote α′ (resp. µ′) the random
variable obtained by decrypting cα (resp. cµ) with ŝk1; we introduce a hypothetical
Game3′, which is exactly as Game3, only one decrypts cα (resp. cµ) with decryption key
ŝk1, thus obtaining α′ (resp. µ′). Moreover in Game3′ the check performed in Phase 2 is
‘If µ′P +B1,j 6= k̂1Wj then abort’.

Observation. A’s view in Game2 and in Game3′ is identical. By demonstrating that
the probability A’s view differs when F uses α, µ in Game3 from when it uses α′, µ′ in
Game3′ is negligible, we can conclude that A cannot distinguish Game2 and Game3 with
significant probability.

The smoothness of Hhsm-cl ensures that given pk1, which fixes sk1 mod s, the distribution
followed by sk1 mod q remains δs-close to U(Z/qZ). In particular this ensures that A’s
view of α and α′ are δs-close. Indeed, A receives an invalid encryption of k1, which
information theoretically masks k1. At this point A’s view of k1 is that of a random
variable following a distribution δs-close to U(Z/qZ). A then computes cα which is
sends to F. Then A receives either (a one way function of) k1, or (a one way function
of) some random value unrelated to k1, which follows the uniform distribution modulo
q. Finally A must decide which it received.

For µ and µ′, the indistinguishability of A’s view of both random variables is a little more
delicate, since A gets additional information from the check on the curve performed by
F, namely in Game3 if µP +B1,j 6= k1Wj then F aborts. We call the output of this check
test. And in Game3′, if µ′P+B1,j 6= k̂1Wj then F aborts. We call the output of this check
test′. Notice that if test = test′, both games are δs-close from A’s view (since the only
change is in the ciphertext ck1). Let us upper bound the probability p that test 6= test′.
This will allow us to conclude that

|Pr[E3]− Pr[E2]| ¬ p + δs.

Consider the ciphertext cµ = (uµ, eµ) ∈ Ĝ × Ĝ sent by A. There exist unique zµ ∈ Ĝq,
bµ ∈ Z/qZ such that uµ = zµf

bµ . Since sk1 = ŝk1 mod $, µ =⊥ if and only if µ′ =⊥.

This occurs when eµz
−sk1
µ = eµz

−ŝk1
µ /∈ F . In this case Game3 is δs-close to Game3′ from

A’s view (F aborts in both cases). We hereafter assume decryption does not fail, which

allows us to adopt the following notation: eµ = zsk1µ fhµ = zŝk1µ fhµ with hµ ∈ Z/qZ. We
thus have:

µ = logf (eµu−sk1µ) = hµ − bµsk1 mod q and µ′ = logf (eµu−ŝk1µ) = hµ − bµŝk1 mod q.

And consequently:

µ− µ′ = bµ(ŝk1 − sk1) = bµb1
−1(k1 − k̂1) mod q.

We consider three cases:

196

CHAPTER 5. DISTRIBUTING EC-DSA

(a) µ = µ′ mod q. This may happen for two reasons:

i. If k1 = k̂1 mod q, then Game3 and Game3′ are identical.
ii. Else bµ = 0 mod q, i.e. uµ ∈ Ĝq and cµ is a valid ciphertext. Since we ruled

out k1 = k̂1 mod q in the previous case, if test = true, necessarily test’ = false,
and vice versa. Both cases being symmetric, we consider the case test = true.
From A’s view, prior to outputting cµ the only fixed information relative to
k1 is that contained ck1 = (gr1q f

b1 , (gr1q f
b1)sk1fk1). This fixes π0 := b1 · sk1 +

k1 mod q. However from A’s view, given pk1, the random variable sk1 follows
a distribution δs-close to U(Z/qZ); thus k1 also follows a distribution δs-close
to U(Z/qZ). Now A returns B1,j and cµ = (zµ, zsk1µ fµ), where zµ ∈ Ĝq, which
satisfy µP+B1,j = k1Wj since test = true. Thus A has information theoretically
fixed the value of k1 mod q, given a view of k1 which is δs-close to U(Z/qZ).
Hence this occurs with probability 6 1/q + δs.

(b) µ 6= µ′ mod q but µ− µ′ = wj(k1 − k̂1) mod q, i.e. bµ = wjb1 mod q. This results in
F aborting on µ′ in Game2 if and only if F aborts on µ in Game3. This occurs if
the adversary performs homomorphic operations on ck1 , and the difference between
the random variables is that expected by F. Indeed:

µ = k1wj ⇔ µ′ + wj(k1 − k̂1) = k1wj ⇔ µ′ = k̂1wj .

(c) µ 6= µ′ mod q and µ− µ′ 6= wj(k1 − k̂1) mod q. We here consider three sub-cases:

i. Either test′ = test = false; in this case Game3 is δs-close to Game3′ from A’s
view.

ii. Either test′ = true; this means that:

µ′ = k̂1wj − ν1,j mod q.

Now since µ− µ′ 6= wj(k1 − k̂1) mod q necessarily test = false. Consequently if
this event occurs, A’s view differs. Let us prove that information theoretically,
this can not happen with probability greater than 1/q+ δs. For clarity, we first
recall the expression of ck1 received by A:

ck1 = (gr1q f
b1 , pkr11 f

ŝk1b1+k̂1)

where b1 6= 0 mod q. We also recall the expression of cµ, sent by A to F. Since
cµ decrypts to µ′ with decryption key ŝk1, we can write:

cµ = (zµf bµ , zŝk1µ fµ
′+bµ ŝk1).

Let us denote π0 := ŝk1b1 + k̂1 mod q and π1 := µ′ + bµŝk1. For this case to
occur, it must hold that µ′ = k̂1wj − ν1,j mod q, so

π1 = k̂1wj − ν1,j + bµŝk1 mod q.

Substituting ŝk1 for (π0 − k̂1)b−1
1 yields:

π1 = k̂1wj − ν1,j + bµb
−1
1 (π0 − k̂1) mod q

⇔ π1 + ν1,j − bµb−1
1 π0 = k̂1(wj − bµb−1

1) mod q

197

CHAPTER 5. DISTRIBUTING EC-DSA

As we dealt with bµ = wjb1 mod q in case (b), here wj−bµb−1
1 is invertible mod

q so we can write:

k̂1 = (π1 + ν1,j − bµb−1
1 π0)(wj − bµb−1

1)−1 mod q (5.3)

where π0, b1 are fixed by ck1 ; π1, bµ are fixed by cµ; wj is fixed by Wj ; and ν1,j

is fixed by B1,j . So given A’s view and A’s output (B1,j and cµ), all the terms
on the right hand side of Eq. (5.3) are fixed. However, given pk1, ck1 and Wj

(which is all the relevant information A gets prior to outputting cµ), the δs-
smoothness of Hhsm-cl ensures that k̂1 follows a distribution δs-close to U(Z/qZ).
If the current case occurs, Eq. (5.3) must hold, thus from being given a view
where k̂1 follows a distribution δs-close to U(Z/qZ), A succeeds in fixing this
random variable to be the exact value used by F. This occurs with probability
6 1/q + δs.

iii. Else test = true; this means that µ = k1wj − ν1,j mod q. Since (µ − µ′ 6=
wj(k1− k̂1) mod q) necessarily test′ fails, and A’s view differs. Reasoning as in
the previous case, but setting π0 := sk1b1 + k1 mod q and π1 := µ+ bµsk1, one
demonstrates that this case occurs with probability 6 1/q + δs.

Combining the above, we get that test′ 6= test if and only if we are in case (a) ii. (c) ii.
or (c) iii., which occurs with probability 6 3(1/q + δs). Thus:

|Pr[E3]− Pr[E2]| 6 3/q + 4δs.

Game3 to Game4. In Game4, the first element u1 of ck1 is once again sampled in Gq. Both
games are indistinguishable under the hardness of SMhsm-cl and:

|Pr[E4]− Pr[E3]| ¬ δhsm-cl.

Game4 to Game5. In Game5 F uses the public key pk1 to encrypt k1. The change here
is exactly that between Game0 and Game1, both games are perfectly indistinguishable,
and:

|Pr[E5]− Pr[E4]| = 0.

Real/Ideal executions. Putting together the above probabilities, we get that:

|Pr[E6]− Pr[E0]| ¬ 2δhsm-cl + 3/q + 4δ,

which concludes the proof of the claim.

3. We now tackle the third and last difference between the real and simulated executions
of the signature protocol. Justifying that this difference is unnoticeable to the adversary
will allow us to conclude the proof of Lemma 5.14. Notice that F does not know σ1, and
thus cannot compute s1 as in a real execution. Instead it computes s1 = s−

∑
j∈S,j 6=1 sj =

s−
∑
j∈S,j 6=1(kjm+σjr) where implicitly s = k̂(m+rx). So s1 = k̂1m+r(k̂x−

∑
j∈S,j 6=1 σj),

and F is implicitly setting σ̂1 := k̂x −
∑
j∈S,j 6=1 σj so k̂x = σ̂1 +

∑
j∈S,j 6=1 σj . We note

that, since the real execution is semi correct, the correct shares of k for the adversary are
the ki that F knows and R = k̂P = (k̂1 +

∑
j∈S,j 6=1 kj). Therefore the value s1 computed

by F is consistent with a correct share for P1 for a valid signature (r, s), which makes
Phase 5 indistinguishable from the real execution to the adversary. In particular, observe
that if none of the parties aborted during Phase 2, the output shares are correct. So if

198

CHAPTER 5. DISTRIBUTING EC-DSA

A here uses the values {σj}j∈S,j>1 as computed in a real execution of the protocol, it
expects the signature generation protocol to output a valid signature. And indeed with
F’s choice of σ̂1 and k̂1, the protocol will terminate, outputting the valid signature (r, s)
it received from its signing oracle. Conversely, if A attempts to cheat in Phase 5 by using
a different set of σj ’s than those prescribed by the protocol, the check

∑
i∈S Ti =

∑
i∈S Ui

will fail, and all parties abort as in a real execution of the protocol.

Non semi-correct executions

Lemma 5.15. Let GenG be the algorithm which on input a security parameter λ outputs the
EC description (G, P, q), and let C denote the size of the challenge space used in the ZKAoK
for REnc. Assuming the SR assumption and the LOC assumption hold for GenCL; that the DDH
assumption holds for GenG; and the commitment scheme is non-malleable and equivocal; then
the simulation is computationally indistinguishable from a non-semi-correct real execution.

Proof. We construct three games between the simulator F (running P1) and the adversary
A (running all other players). In Game0, F runs the real protocol. The only change between
Game0 and Game1 is that in Game1, F chooses U1 as a random group element. In Game2 the
simulator F runs the simulation described in Fig. 5.11.

Game0 to Game1. We prove that if there exists an adversary A distinguishing Game0 and
Game1, A can be used to break the DDH assumption in G. Let Ã = a · P , B̃ = b · P ,
C̃ = c · P be the DDH challenge where c = ab or c←↩ Z/qZ. The DDH adversary F0 runs A,
simulating the key generation phase and setting the EC-DSA verification key to be Q = B̃. F0

also extracts the values {xj}j∈[n],j 6=1 chosen by A from the ZKPoK of step 11 of the IKeyGen
simulation of Fig. 5.11. At this point Q = B̃ and F0 knows xi and the decryption key sk1
matching pk1, but not b and therefore not x1.

Next F0 runs the simulated signing protocol for a non-semi-correct execution. Recall that
S ⊆ [n] denotes the subset of players collaborating in ISign. Denoting t := |S|, the (t, n) shares
{xi}i∈[n] are converted into (t, t) shares {wi}i∈S as per the protocol. Thus b =

∑
i∈S wi where

F0 knows {wj}j∈S,j 6=1 but not w1. We denote wA :=
∑
j∈S,j 6=1wj which satisfies w1 = b−wA.

F0 runs the signing protocol normally for Phases 1, 2, 3, 4. It extracts the values {γj}j∈S,j 6=1

from the PoK in Phase 4, and knows γ1 since it ran P1 normally. Therefore F0 knows k such
that R = k−1 · P since k = (

∑
i γi)

−1δ mod q. It also knows k1 (chosen normally according
to the protocol) and {kj}j∈S,j 6=1 which – assuming the SR and LO assumptions hold – it can
extract from the proofs in Phase 1.

Before moving to the simulation of Phase 5, let’s look at Phase 2 of the protocol for the
computation of the shares σi. We note that since F0 knows sk1 it also knows all the shares
µ1,j since it can decrypt the ciphertext ck1wj received from Pj . However F0 does not know w1

therefore it sends the encryption of a random µj,1 to Pj and sets (implicitly) νj,1 = kjw1−µj,1.
At the end the share σ1 held by P1 is

σ1 = k1w1 +
∑

j∈S,j 6=1

(µ1,j + νj,1) = k̃w1 +
∑

j∈S,j 6=1

(µ1,j − µj,1) where k̃ =
∑
i∈S

ki.

Recall that since this is a non-semi-correct execution k̃ 6= k whereR = k−1·P . Since w1 = b−wA
we have σ1 = k̃b + µ1 where µ1 =

∑
j∈S,j 6=1(µ1,j − µj,1) − k̃wA with µ1, k̃ known to F0. This

allows F0 to compute the correct value σ1 ·P = k̃B̃ + µ1 ·P and therefore the correct value of
s1 ·R as:

s1 ·R = (k1m+ rσ1) ·R = k−1(k1m+ rσ1) · P

199

CHAPTER 5. DISTRIBUTING EC-DSA

= k−1(k1m+ rµ1) · P + k−1(k̃r) · B̃ = µ̂1 · P + β̂1 · B̃

where µ̂1 = k−1(k1m+ rµ1) and β̂1 = k−1k̃r are known to F0.
In the simulation of Phase 5, F0 selects a random `1 and sets V1 := s1 · R + `1 · P,

A1 = ρ1 · P = Ã = a · P . It simulates the ZKP (since it does not know ρ1 or s1) and extracts
si, `i, ρi from A’s proofs s.t. Vi = si · R + `i · P = k−1si · P + `i · P and Ai = ρi · P . Let
sA =

∑
j∈S,j 6=1 k

−1sj . Note that, substituting the above relations (and setting ` =
∑
i∈S `i),

we have: V = −m ·P − r ·Q+
∑
i∈S Vi = ` ·P + s1 ·R+ (sA−m) ·P − r ·Q. Moreover Q = B̃

so −r ·Q = −r · B̃, and:

V = ` · P + µ̂1 · P + β̂1 · B̃ + (sA −m) · P − r · B̃ = (`+ θ) · P + κ · B̃

where F0 knows θ = µ̂1 + sA − m and κ = β̂1 − r. Note that for executions that are not
semi-correct κ 6= 0.

Next F0 computes T1 ← `1 · A (correctly), but computes U1 as U1 ← (` + θ) · Ã + κ · C̃,
using this U1 it continues as per the real protocol and aborts on the check

∑
i∈S Ti =

∑
i∈S Ui.

Observe that when C̃ = ab · P , by our choice of a = ρ1 and b = x, we have that U1 =
(` + θ)ρ1 · P + κ · ρ1B̃ = ρ1 · V as in Game0. However when C̃ is a random group element,
U1 is uniformly distributed as in Game1. Therefore under the LO, SR, and DDH assumptions
Game0 and Game1 are indistinguishable.

Game1 to Game2. In Game2, F broadcasts a random Ṽ1 = s̃1 ·R+`1 ·P . This is indistinguishable
from the correct V1 = s1 ·R+`1 ·P thanks to the mask `1 ·P which (under the DDH assumption)
is computationally indistinguishable from a random value, since the adversary only knows A1.
To be precise, let Ã = (a−δ)·P, B̃ = b·P and C̃ = ab·P be the DDH challenge where δ is either
0 or random in Z/qZ. The simulator proceeds as in Game0 (i.e. the regular protocol) until Phase
5. In Phase 5, F0 broadcasts V1 = s̃1 ·R+ Ã and A1 = B̃. It simulates the ZKPoK (it does not
know `1 or ρ1), and extracts si, `i, ρi from the adversary s.t. Vi = si ·R+`i ·P = k−1si ·P+`i ·P
and Ai = ρi · P .

Next F0 samples a random U1 and sets T1 ← C̃+
∑
j∈S,j 6=1 ρj ·Ã before aborting. Note that

when Ã = aP , we implicitly set a = `1 and b = ρ1 and have V1 = s1 ·R+ `1 ·P and T1 = `1 ·A
as in Game1. However when Ã = aP − δP with a random δ, then this is equivalent to having
V1 = s̃1R + `1P and T1 = `1A with a randomly distributed s̃1 as in Game2. Therefore under
the DDH assumption Game1 and Game2 are indistinguishable.

Concluding the proof

As mentioned when introducing the simulation of ISign (Fig. 5.11), the forger F simulating A’s
environment can detect if it is in a semi-correct-execution or not, i.e. whether A decides to be
malicious and terminate the protocol with an invalid signature. Consequently F always knows
how to simulate A’s view and all simulated executions of the protocol are indistinguishable of
real ones. Moreover if A, having corrupted up to t parties in the threshold EC-DSA protocol,
outputs a forgery, since F set up with A the same public key Q as it received from its’ EC-
DSA challenger, F can use this signature as its own forgery, thus breaking the existential
unforgeability of standard EC-DSA.

Denoting Advtu-cmat−ecdsa,A , A’s advantage in breaking the existential unforgeability of our
threshold protocol, and Adveuf-cmaecdsa,F the forger F’s advantage in breaking the existential unforge-
ability of centralised EC-DSA, from Lemmas 5.14 and 5.15 it holds that if the DDH assump-
tion holds for generator GenG; the SR assumption and the LOC assumption hold for GenCL;
SMhsm-cl is a hard SMP; Hhsm-cl is smooth; and the commitment scheme is non-malleable and

200

CHAPTER 5. DISTRIBUTING EC-DSA

equivocal then: |Adveuf-cmaecdsa,F −Advtu-cmat−ecdsa,A | = negl. Unforgeability of centralised EC-DSA states
that Adveuf-cmaecdsa,F is negligible, which implies that Advtu-cmaΠ,A is too.We can thus state the following
theorem, which captures the security of the protocol.

Theorem 5.16. Assuming centralised EC-DSA is an euf-cma signature scheme; the DDH as-
sumption holds for generator GenG; the SR and the LOC assumptions hold for GenCL; SMhsm-cl

is a hard SMP; Hhsm-cl is smooth; and the commitment scheme is non-malleable and equivocal,
then the (t, n)-threshold EC-DSA protocol of Figs. 5.9 and 5.10 is a tu-cma threshold signature
scheme.

5.3.5 Efficiency Comparisons

We analyse the theoretical complexity of our protocol, using the timings computed for a
multiplication of Section 2.6.3, and estimating the resulting time taken for exponentiations.
Regarding bandwidth consumption we count the communication of group elements. We com-
pare the communication cost of our protocol to those of [GG18,LN18] for the standard NIST
curves P-256, P-384 and P-521, corresponding to levels of security 128, 192 and 256. For the
encryption scheme, we start with a 112 bit security, as in the [GG18,LN18] implementations,
but also study the case where its level of security matches that of the EC.

We compare our work to best performing pre-existing protocols using similar construction
techniques (from homomorphic encryption) which achieve the same functionality, i.e. (t, n)-
threshold EC-DSA for any t s.t. n t+1. We do not provide a comparison to [DKLs18,DKLs19]
as they use oblivious transfer which leads to protocols with a much higher communication cost.
Similarly, and as noted in [DKO+19] a direct comparison to [DKO+19, SA19] is difficult as
they rely on preprocessing to achieve efficient signing, which is a level of optimisation we have
not considered. We don’t compare to [GGN16,BGG17] as [GG18] is already faster and cheaper
in terms of communication complexity.

The computed communication cost is for our protocol as described in Section 5.3.3, and as
such is provably secure. Conversely the implementation which [GG18] provided omits a number
of range proofs present in their described protocol. Though this substantially improves the
efficiency of their scheme, they themselves note that removing these proofs creates an attack
which leaks information on the secret signing key shared among the servers. They conjecture
this information is limited enough for the protocol to remain secure, however since no formal
analysis is performed, the resulting scheme is not proven secure. For a fair comparison we
estimate the communication cost and timings of both their secure protocol and the stripped
down version. In terms of bandwidth we outperform even their stripped down protocol.

In both protocols, when possible ZKPs are performed non interactively, replacing the chal-
lenge by a hash value, whose size depends on the security parameter λ. We note that our
interactive setup for the Πhsm-cl encryption scheme uses a ZKPoK where challenges are of size
10 bits (using the lcm trick), it must thus be repeated λ/10 times. We note however that the
PoK of integer factorisation used in the key generation of [GG18] has similar issues.

For non-malleable equivocal commitments, we use a cryptographic hash function H and
define the commitment to x as h = H(x, r) for a uniformly chosen r of length λ. We assume
H behaves as a random oracle.

The communication cost comparison is done by counting the number of bits that are both
sent and received by a given party throughout the protocol7. In terms of timings, we do not
count exponentiations and multiplications over the EC group as these are very cheap compared

7Broadcasting one element is counted as sending one element.

201

CHAPTER 5. DISTRIBUTING EC-DSA

to computations in the class group of in Z/N2Z, furthermore both protocols essentially perform
identical operations on the curve.

The [LN18] protocol with Paillier encryption. We use the figures Lindell et al. provide
in [LN18, Tab. 1] to compare our protocol to theirs. We note that – to their advantage – their
key generation should include additional costs which are not counted in our figures (e.g. local
Paillier key generation, verification of the ZKP of correctness of the Paillier key); hence we
do not take it into account in our color-coded comparison. The resulting costs are given in
Fig. 5.12a.

The [GG18] protocol with Paillier encryption. The main cost in their IKeyGen protocol
is the ZKPoK of integer factorisation, which is instantiated using [PS00, Thm. 8]. Precisely
each prover commits to K values mod N , the challenge lives mod B, the final opening is an
element of size A, where, as prescribed in [GPS06], we take log(A) = log(N), log(B) = λ and
K = λ+log(|N |)

log(C) where C = 260 is chosen s.t. Floyd’s cycle-finding algorithm is efficient in a
space of size smaller than C. For their signature protocol, the cost of the ZKPs used in the
MtA protocol are counted using [GG18, Appendix A].

The results are summarised in Fig. 5.12b. Since the range proofs (omitted in the stripped
down version) only occur in the signing protocol, the timings and communication cost of their
interactive key generation is identical in both settings, we thus only provide these figures once.
Furthermore, as it is not provably secure, we do not take their stripped down protocol into
account in our color-coded comparison.

The communication cost of each protocol is given in Bytes. The columns correspond to the
EC used for EC-DSA, the security parameter λ in bits for the encryption scheme, the timings
of the key generation and of the signing phase and the total communication in bytes for each
interactive protocol.

Our protocol with the Πhsm-cl encryption scheme. For key generation we take into
account the interactive key generation for Πhsm-cl, which is done in parallel with IKeyGen,
consequently the number of rounds of IKeyGen increases by only one broadcast per player.
In IKeyGen, each party performs 2 class group exponentiations of log(s̃) + 40 bits (where
s̃ ≈

√
q · q̃), to compute generators gi and public keys pki, and nλ/10 exponentiations of

log(s̃) + 90 bits for the proofs and checks in the ISetup sub-protocol.
Signing uses 2 + 10t exponentiations of log(s̃) + 40 bits (for computing ciphertexts and

homomorphic operations), 2(t + 1) exponentiations of log(s̃) + 80 + λ bits (for the ZKAoK)
and 2t exponentiations of size q (for homomorphic scalar multiplication of ciphertexts).

The results are summarised in Fig. 5.12c. The columns correspond to the EC used for
EC-DSA, the security parameter λ in bits for the encryption scheme, the timings of the key
generation and of the signing phase and the total communication in bytes for IKeyGen and
ISign.

Rounds. Our protocols require the same number of rounds as those of [LN18]. Our IKeyGen
requires 5 rounds (only 4 assuming a standardised setup), compared to 4 in [GG18]. Our
signing protocol requires 8 rounds as opposed to 9 in [GG18].

Comparison. Fig. 5.12 shows that the protocols of [LN18, GG18] are faster for both key
generation and signing for standard security levels for the encryption scheme (112 and 128
bits of security) while our solution remains of the same order of magnitude. However for high
security levels, our signing protocol is fastest from a 192-bits security level.

In terms of communication, our solution outperforms the other two protocols for all levels
of security, factors vary according to the number of users n and the desired threshold t.

202

CHAPTER 5. DISTRIBUTING EC-DSA

Curve λ (bits) IKeyGen (ms) ISign (ms) IKeyGen (Bytes) ISign (Bytes)
P-256 112 > 95n+ 95 181t > 6 336(n− 1) 16 064t
P-256 128 > 331n+ 331 632t > 9 152(n− 1) 22 208t
P-384 192 > 3 548n+ 3 548 6 773t > 22 176(n− 1) 51 744t
P-521 256 > 20 579n+ 20 579 39 288t > 43 672(n− 1) 99 845t

(a) [LN18]’s secure t out of n protocol.

Provably secure (with range proofs) Stripped down
Curve λ IKeyGen ISign IKeyGen ISign ISign ISign

bits (ms) (ms) (Bytes) (Bytes) (ms) (Bytes)
P-256 112 77n+ 9 170t 32(n+ t) + 9 990n− 64 23 308t+ 588 34t 4 932t+ 588
P-256 128 399n+ 30 582t 32(n+ t) + 21 392n− 64 33 568t+ 608 120t 7 008t+ 608
P-384 192 10, 564n+ 323 6 129t 48(n+ t) + 128088n− 96 81 072t+ 912 1290t 16 656t+ 912
P-521 256 121 605n+ 1871 35 246t 65(n+ t) + 503 591n− 130 159 391t+ 1 232 7483t 32 470t+ 1 231

(b) [GG18]’s t out of n protocol.

We note that using a public coin setup for CL, which provides a description of Ĝ, of the
subgroups F and Gq and of a random generator gq of Gq, one could completely omit the
interactive setup phase for the CL encryption scheme and have all parties use the output of
this public coin process. Such a setup has been described in [LM19, Section 8.1]. In our protocol
this would reduce the bandwidth consumption of IKeyGen by a factors varying from 6 to 16 (for
increasing levels of security). Moreover in terms of timings, the only exponentiation in the class
group would be each party computing its own ciphertext, and so the only operations linear
in the number of users n would be on the curve (or integers modulo q), which are extremely
efficient.

203

CHAPTER 5. DISTRIBUTING EC-DSA

Curve λ IKeyGen ISign IKeyGen ISign
(bits) (ms) (ms) (Bytes) (Bytes)

P-256 112 466n+ 79 459t+ 175 32(n + t) + 2951n− 64 3 670t + 1 747
P-256 128 939n+ 137 922t+ 299 32(n + t) + 4 297n− 64 4 455t + 2 052
P-384 192 5 276n+ 541 3 538t + 1 149 48(n + t) + 10 851n− 96 8 022t + 3 560
P-521 256 21 110n+ 1 597 10 291t + 3 351 65(n + t) + 22 942n− 130 12 576t + 5 433

(c) Our secure t out of n protocol – With an interactive setup for Πhsm-cl.

Figure 5.12: Comparative sizes (in bits), timings (in ms) and communication cost (in Bytes)

204

CHAPTER 5. DISTRIBUTING EC-DSA

206

Chapter 6

Conclusion and Open Problems

In this thesis we first focused on building new tools from the framework of a group G with
an easy discrete logarithm subgroup F introduced by Laguillaumie and Castagnos in [CL15].
Their work grounded itself on the hardness of the DDH problem in G. We started off formalis-
ing new hardness assumptions from which we devised families of projective hash functions with
homomorphic properties. From each of these assumptions we also built public key encryption
schemes, which are all linearly homomorphic and benefit of having a prime order message
space, where this prime can (with some restrictions) be chosen independently of the security
parameter. These properties make the encryption schemes (or somewhat equivalently, the cor-
responding PHFs) particularly interesting building blocks for devising advanced cryptographic
primitives.

In view of using the aforementioned encryption schemes to build threshold signatures, where
one must ensure parties send honestly computed ciphertexts, we devise zero knowledge proofs
and arguments for the CL framework. We provide proofs for various statements, including a
proof of knowledge of the plaintext and randomness used to compute a ciphertext. This latter
proof is sufficient to convince a verifier that a ciphertext was honestly generated. Our proofs
deal with difficulties arising from the fact the group G we work in is of unknown order, and
that elements of this group are not efficiently recognisable (one can only recognise elements
of some larger group Ĝ containing G). We provide various trade-offs between security and
efficiency (proofs which are statistically convincing are costly in terms of communication,
whereas computationally convincing proofs require minimal computation and interactions).

Having designed these tools, we then set about employing them to fashion advanced cryp-
tographic primitives, starting with inner product functional encryption. By defining two new
properties for projective hash functions: vector smoothness and vector universality, we are able
to devise both ind-fe-cpa and ind-fe-cca-secure inner product functional encryption schemes
where, conversely to previous such constructions, our security reduction is tight. In particular,
when instantiating our ind-fe-cpa construction from DDH or DCR, we retrieve the construc-
tions of [ALS16, ABDP16], with the same security bound; and when instantiated from our
assumptions in the CL framework, we obtain new constructions. Instantiations from DCR and
from the CL framework yield the most efficient such schemes to date.

Regarding our ind-fe-cca-secure construction, when instantiated from concrete assumptions
such as HSM-CL or DCR, this results in schemes which are the first ind-fe-cca-secure inner
product functional encryption schemes capable of decrypting the inner product whatever its
size, and where running times of our algorithms and ciphertext sizes are reasonable for imple-
mentation in large scale information systems.

In a different style, but still building upon projective hash functions in the CL framework,
we then set about improving the state of the art for threshold EC-DSA. We devised the
first two party EC-DSA protocol which is both efficient in terms of speed and computational

207

CHAPTER 6. CONCLUSION AND OPEN PROBLEMS

bandwidth, has a tight security proof and does not rely on any interactive assumptions. We also
built a competitive full threshold protocol which outperforms comparable protocols (attaining
equivalent functionality) in terms of bandwidth consumption.

These constructions demonstrate that, if one adopts the approach of building threshold
EC-DSA from linearly homomorphic encryption, the Paillier cryptosystem is by no means
adapted to the task, as it introduces the need for range proofs, and in some instances of
artificial and interactive assumptions. Conversely, with the support of our zero knowledge
proofs an arguments for the CL framework, the linearly homomorphic encryption schemes
arising from the CL framework are well suited. Indeed, they allow to choose the order of the
encryption scheme’s message space to be the (standardised) prime order of the elliptic curve
group used to compute EC-DSA signatures, thereby resulting in seamless interactions between
the encryption scheme and the signature computation.

All our generic constructions from projective hash functions can be instantiated from class
group cryptography; this was in fact the instantiation provided by Castagnos and Laguillaumie
for the CL framework. Since best known algorithms for computing the class number – which
is the problem underlying the security of the CL framework – have higher asymptotic com-
plexity than those for factoring integers, or computing the discrete logarithm in finite fields,
group elements in our protocols can be chosen smaller than for those relying on e.g. the DCR
assumption, while maintaining an equivalent level of security. This has significant impact on
the communication complexity of interactive protocols.

Open Problems

We have initiated the task of devising tools from cryptography based on ideal class groups of
imaginary quadratic orders, via the interface provided by the CL framework. As illustrated in
this thesis, these tools allow for the modular design of advanced cryptographic primitives. The
presented tool set is by no means complete, and those tools provided can certainly be further
honed. What is more our constructions can be further refined, be it either by enhancing func-
tionality, reinforcing security or improving efficiency; and there are undoubtedly innumerable
other advanced cryptosystems which can arise from the framework. We here highlight a few
open problems, though there are of course many other technical and interesting questions left
unanswered.

More flexibility for the CL framework. It would be interesting to study to what extend
one can choose the message space in the CL framework, e.g. could we have a message space of
order 2k for a given integer k? This could offer an alternative to the Joye-Libert cryptosystem
[JL13], and would have interesting applications in devising general multi-party computation
protocols supporting operations modulo 2k (as suggested in the SPDZ2k protocol of Cramer
et al. [CDE+18]), it could in particular be used to instantiate the MonZ2ka protocol. Working
modulo 2k matches modern CPU computations and allows protocol designers to directly apply
optimisations and tricks that are possible there.

Another possible extension for the CL would be devising threshold encryption schemes. In
particular can we have a distributed (and decentralised) key generation? Since our encryption
schemes in the CL framework have an Elgamal like structure, and that for Elgamal encryp-
tion, efficient threshold variants are known, one can hope the answer is affirmative. The main
challenge here is dealing with the unknown order of the CL group.

Improving our ZK proofs. In Chapter 3 we present zero-knowledge proofs and arguments
of knowledge for groups of unknown order. The zero-knowledge proofs – whose soundness holds

208

CHAPTER 6. CONCLUSION AND OPEN PROBLEMS

statistically – currently require that exponents be sampled from folded uniform distributions.
What would the impact be (on the security of these proofs, mainly in terms of zero-knowledge)
of sampling exponents from folded Gaussians? Sampling exponents from folded Gaussians
instead of folded uniforms allows for shorter keys, and hence better overall computational
complexity of the resulting protocols.

Stronger security and enriched functionalities for IPFE. In Section 4.6.2, building
upon the techniques of Agrawal et al. [ALMT20a] we explained how – if the group order is
known – one can attain simulation based security against passive adversaries from our generic
construction.

However we cannot apply these techniques to the CL framework, as our group order is
unknown. The natural questions which spring to mind are hence: could one develop an al-
ternative approach to attaining simulation security which would work in groups of unknown
order, and could thus be used in the CL framework? And what properties are required of
projective hash functions to build inner product functional encryption schemes secure against
active adversaries in the simulation based model?

Independently to this strengthening of security, one could study the extension of our con-
structions to deal with the multi-input or multi-client setting, or yet again to allow for a
decentralised key distribution.

Stronger security and enriched functionalities for threshold EC-DSA. Regarding
threshold EC-DSA, in the past few months a profusion of articles have appeared, bringing
great improvements to the state of the art [CMP20, GKSS20, DJN+20, GG20]. These all use
preprocessing techniques to obtain a non interactive signing protocol, so that, for parties to
issue a signature, they need only perform local operations to get an additive share of the
overall signature. In terms of security, they also provide new features. We hereafter give a
brief overview of the added value each of these articles brings to threshold EC-DSA. The work
of Canetti et al. [CMP20], which also builds upon the [GG18] protocol, significantly reduces
the number of rounds required for parties to jointly compute a signature; and proves security
within the universal composability security framework. In concurrent work [GG20] also extend
the [GG18] protocol to handle identifiable aborts (allowing to detect which player is responsible
if the protocol fails to conclude successfully). Conversely Gągol et al. [GKSS20] build upon the
full threshold protocol of [LN18] to further handle identifiable aborts and provide robustness
for the signing protocol (if a minimum number of parties honestly participate in the signing
phase, they are guaranteed to output a valid signature). Finally Damg̊ard et al. – using very
different techniques (they do not rely on homomorphic encryption) – provide a protocol whose
universally composable security, albeit in the honest majority setting, relies solely on the
hardness of EC-DSA. They also explain how, via an extra layer added to their basic protocol,
one can enforce fairness for the signing protocol (all parties get output or nobody does).

We believe one should (quite easily) be able to adapt some of the ideas in the aforemen-
tioned works, in particular, attaining a non interactive, robust and fair signing protocol with
identifiable aborts should be fairly straightforward. Regarding the security model, using the
techniques of [CMP20] (i.e. considering an ideal threshold signature functionality instead of
an ideal EC-DSA functionality), we believe our full threshold protocol may be proven secure
in the UC security framework, however this analysis will certainly be more involved.

Other advanced cryptosystems from the CL framework. A variety of advanced cryp-
tographic primitives can be built using the malleability of linearly homomorphic encryption,
one could look into the design of lossy trapdoor functions [PW08] from the CL framework, or
use it for general purpose multi party computation, building upon the ideas underlying the

209

CHAPTER 6. CONCLUSION AND OPEN PROBLEMS

BeDOZa [BDOZ11,Orl11] or SPDZ [DPSZ12] protocols.

Instantiating our constructions from more varied assumptions. Finally, it would be
interesting to consider instantiating our projective hash functions from more varied crypto-
graphic assumptions, e.g. in the lattice setting. It is known that lattice based projective hash
functions have been particularly difficult to realise; this somewhat hints towards the fact that
such an instantiation would not be straightforward. However it would be worth investigating
how well suited the lattice based projective hash functions of Benhamouda et al. [BBDQ18]
are to an instantiation of our framework. One could then compare resulting protocols to e.g.
the LWE based inner product functional encryption schemes of [ALS16].

210

Bibliography

[ABDP15] M. Abdalla, F. Bourse, A. De Caro, and D. Pointcheval. Simple functional en-
cryption schemes for inner products. In PKC 2015: 18th International Conference
on Theory and Practice of Public Key Cryptography, Lecture Notes in Computer
Science 9020, pages 733–751. Springer, Heidelberg, March / April 2015. 15, 24,
105, 106, 107

[ABDP16] M. Abdalla, F. Bourse, A. De Caro, and D. Pointcheval. Better security for
functional encryption for inner product evaluations. Cryptology ePrint Archive,
Report 2016/011, 2016. http://eprint.iacr.org/2016/011. 20, 29, 106, 125,
128, 207

[ABG19] M. Abdalla, F. Benhamouda, and R. Gay. From single-input to multi-client inner-
product functional encryption. In Advances in Cryptology – ASIACRYPT 2019,
Part III, Lecture Notes in Computer Science 11923, pages 552–582. Springer,
Heidelberg, December 2019. 107

[ABKW19] M. Abdalla, F. Benhamouda, M. Kohlweiss, and H. Waldner. Decentralizing
inner-product functional encryption. In PKC 2019: 22nd International Confer-
ence on Theory and Practice of Public Key Cryptography, Part II, Lecture Notes
in Computer Science 11443, pages 128–157. Springer, Heidelberg, April 2019. 107

[ABP+17] S. Agrawal, S. Bhattacherjee, D. H. Phan, D. Stehlé, and S. Yamada. Efficient
public trace and revoke from standard assumptions: Extended abstract. In ACM
CCS 2017: 24th Conference on Computer and Communications Security, pages
2277–2293. ACM Press, October / November 2017. 15, 24, 106, 130

[ACF+18] M. Abdalla, D. Catalano, D. Fiore, R. Gay, and B. Ursu. Multi-input func-
tional encryption for inner products: Function-hiding realizations and construc-
tions without pairings. In Advances in Cryptology – CRYPTO 2018, Part I,
Lecture Notes in Computer Science 10991, pages 597–627. Springer, Heidelberg,
August 2018. 106

[ACGU20] M. Abdalla, D. Catalano, R. Gay, and B. Ursu. Inner-product functional en-
cryption with fine-grained access control. Cryptology ePrint Archive, Report
2020/577, 2020. https://eprint.iacr.org/2020/577. 107

[AGRW17] M. Abdalla, R. Gay, M. Raykova, and H. Wee. Multi-input inner-product func-
tional encryption from pairings. In Advances in Cryptology – EUROCRYPT 2017,
Part I, Lecture Notes in Computer Science 10210, pages 601–626. Springer, Hei-
delberg, April / May 2017. 106, 152

[AGVW13] S. Agrawal, S. Gorbunov, V. Vaikuntanathan, and H. Wee. Functional encryption:
New perspectives and lower bounds. In Advances in Cryptology – CRYPTO 2013,

211

http://eprint.iacr.org/2016/011
https://eprint.iacr.org/2020/577

BIBLIOGRAPHY BIBLIOGRAPHY

Part II, Lecture Notes in Computer Science 8043, pages 500–518. Springer, Hei-
delberg, August 2013. 149

[AL10] N. Attrapadung and B. Libert. Functional encryption for inner product: Achiev-
ing constant-size ciphertexts with adaptive security or support for negation. In
PKC 2010: 13th International Conference on Theory and Practice of Public Key
Cryptography, Lecture Notes in Computer Science 6056, pages 384–402. Springer,
Heidelberg, May 2010. 149

[ALMT20a] S. Agrawal, B. Libert, M. Maitra, and R. Titiu. Adaptive simulation security for
inner product functional encryption. In Public-Key Cryptography – PKC 2020,
pages 34–64, Cham, 2020. Springer International Publishing. 106, 109, 150, 151,
209

[ALMT20b] S. Agrawal, B. Libert, M. Maitra, and R. Titiu. Adaptive simulation security for
inner product functional encryption. In PKC 2020: 23rd International Conference
on Theory and Practice of Public Key Cryptography, Part I, Lecture Notes in
Computer Science 12110, pages 34–64. Springer, Heidelberg, May 2020. 107, 152

[ALS16] S. Agrawal, B. Libert, and D. Stehlé. Fully secure functional encryption
for inner products, from standard assumptions. In Advances in Cryptology –
CRYPTO 2016, Part III, Lecture Notes in Computer Science 9816, pages 333–
362. Springer, Heidelberg, August 2016. 15, 20, 21, 24, 29, 51, 63, 64, 106, 107,
108, 109, 114, 115, 125, 126, 128, 129, 130, 131, 143, 144, 145, 146, 152, 207, 210,
231

[ANT+20] D. F. Aranha, F. R. Novaes, A. Takahashi, M. Tibouchi, and Y. Yarom. Ladder-
leak: Breaking ecdsa with less than one bit of nonce leakage. Cryptology ePrint
Archive, Report 2020/615, 2020. https://eprint.iacr.org/2020/615. 161

[BBBF18] D. Boneh, J. Bonneau, B. Bünz, and B. Fisch. Verifiable delay functions. In
Advances in Cryptology – CRYPTO 2018, Part I, Lecture Notes in Computer
Science 10991, pages 757–788. Springer, Heidelberg, August 2018. 18, 27

[BBDQ18] F. Benhamouda, O. Blazy, L. Ducas, and W. Quach. Hash proof systems over
lattices revisited. In PKC 2018: 21st International Conference on Theory and
Practice of Public Key Cryptography, Part II, Lecture Notes in Computer Science
10770, pages 644–674. Springer, Heidelberg, March 2018. 210

[BBF18] D. Boneh, B. Bünz, and B. Fisch. A survey of two verifiable delay functions.
Cryptology ePrint Archive, Report 2018/712, 2018. https://eprint.iacr.org/
2018/712. 71, 72

[BBF19] D. Boneh, B. Bünz, and B. Fisch. Batching techniques for accumulators with
applications to IOPs and stateless blockchains. In Advances in Cryptology –
CRYPTO 2019, Part I, Lecture Notes in Computer Science 11692, pages 561–
586. Springer, Heidelberg, August 2019. 71

[BBHM02] I. Biehl, J. Buchmann, S. Hamdy, and A. Meyer. A signature scheme based on the
intractability of computing roots. Designs, Codes and Cryptography, 25(3):223–
236, Mar 2002. 71

212

https://eprint.iacr.org/2020/615
https://eprint.iacr.org/2018/712
https://eprint.iacr.org/2018/712

BIBLIOGRAPHY BIBLIOGRAPHY

[BBL17] F. Benhamouda, F. Bourse, and H. Lipmaa. CCA-secure inner-product functional
encryption from projective hash functions. In PKC 2017: 20th International Con-
ference on Theory and Practice of Public Key Cryptography, Part II, Lecture Notes
in Computer Science 10175, pages 36–66. Springer, Heidelberg, March 2017. 11,
21, 29, 30, 77, 106, 107, 108, 110, 112, 125, 135, 137, 142, 143, 147, 148, 231, 234,
235, 236, 237

[BCC88] G. Brassard, D. Chaum, and C. Crépeau. Minimum disclosure proofs of knowl-
edge. Journal of Computer and System Sciences, 37(2):156 – 189, 1988. 57

[BCP03] E. Bresson, D. Catalano, and D. Pointcheval. A simple public-key cryptosystem
with a double trapdoor decryption mechanism and its applications. In Advances
in Cryptology – ASIACRYPT 2003, Lecture Notes in Computer Science 2894,
pages 37–54. Springer, Heidelberg, November / December 2003. 89, 91

[BCPV13] O. Blazy, C. Chevalier, D. Pointcheval, and D. Vergnaud. Analysis and improve-
ment of Lindell’s UC-secure commitment schemes. In ACNS 13: 11th Interna-
tional Conference on Applied Cryptography and Network Security, Lecture Notes
in Computer Science 7954, pages 534–551. Springer, Heidelberg, June 2013. 46

[BDGM20] Z. Brakerski, N. Döttling, S. Garg, and G. Malavolta. Candidate iO from homo-
morphic encryption schemes. In Advances in Cryptology – EUROCRYPT 2020,
Part I, Lecture Notes in Computer Science 12105, pages 79–109. Springer, Hei-
delberg, May 2020. 42

[BDOP04] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryption
with keyword search. In Advances in Cryptology – EUROCRYPT 2004, Lecture
Notes in Computer Science 3027, pages 506–522. Springer, Heidelberg, May 2004.
149

[BDOZ11] R. Bendlin, I. Damg̊ard, C. Orlandi, and S. Zakarias. Semi-homomorphic en-
cryption and multiparty computation. In Advances in Cryptology – EURO-
CRYPT 2011, Lecture Notes in Computer Science 6632, pages 169–188. Springer,
Heidelberg, May 2011. 42, 210

[Bea96] D. Beaver. Adaptive zero knowledge and computational equivocation (extended
abstract). In 28th Annual ACM Symposium on Theory of Computing, pages 629–
638. ACM Press, May 1996. 45

[Bel04] K. Belabas. On quadratic fields with large 3-rank. Mathematics of Computation,
73(248):2061–2074, 2004. 72

[Ben87] J. D. C. Benaloh. Verifiable Secret-Ballot Elections. PhD thesis, USA, 1987.
AAI8809191. 42

[BF01] D. Boneh and M. K. Franklin. Identity-based encryption from the Weil pairing.
In Advances in Cryptology – CRYPTO 2001, Lecture Notes in Computer Science
2139, pages 213–229. Springer, Heidelberg, August 2001. 149

[BFS20] B. Bünz, B. Fisch, and A. Szepieniec. Transparent SNARKs from DARK com-
pilers. In Advances in Cryptology – EUROCRYPT 2020, Part I, Lecture Notes
in Computer Science 12105, pages 677–706. Springer, Heidelberg, May 2020. 18,
27, 71

213

BIBLIOGRAPHY BIBLIOGRAPHY

[BG93] M. Bellare and O. Goldreich. On defining proofs of knowledge. In Advances in
Cryptology – CRYPTO’92, Lecture Notes in Computer Science 740, pages 390–
420. Springer, Heidelberg, August 1993. 58

[BGG17] D. Boneh, R. Gennaro, and S. Goldfeder. Using level-1 homomorphic encryption
to improve threshold dsa signatures for bitcoin wallet security. In LATINCRYPT,
2017. 156, 201

[BH01] J. Buchmann and S. Hamdy. A survey on IQ cryptography. In Public Key Cryp-
tography and Computational Number Theory, pages 1–15. De Gruyter Proceedings
in Mathematics, 2001. 71

[BHH+14] J. W. Bos, J. A. Halderman, N. Heninger, J. Moore, M. Naehrig, and E. Wustrow.
Elliptic curve cryptography in practice. In FC 2014: 18th International Confer-
ence on Financial Cryptography and Data Security, Lecture Notes in Computer
Science 8437, pages 157–175. Springer, Heidelberg, March 2014. 161

[BHJ+13] F. Böhl, D. Hofheinz, T. Jager, J. Koch, J. H. Seo, and C. Striecks. Practi-
cal signatures from standard assumptions. In Advances in Cryptology – EURO-
CRYPT 2013, Lecture Notes in Computer Science 7881, pages 461–485. Springer,
Heidelberg, May 2013. 45

[BJK15] A. Bishop, A. Jain, and L. Kowalczyk. Function-hiding inner product encryption.
In Advances in Cryptology – ASIACRYPT 2015, Part I, Lecture Notes in Com-
puter Science 9452, pages 470–491. Springer, Heidelberg, November / December
2015. 106

[BJS10] J.-F. Biasse, M. J. Jacobson, and A. K. Silvester. Security estimates for quadratic
field based cryptosystems. In ACISP 10: 15th Australasian Conference on Infor-
mation Security and Privacy, Lecture Notes in Computer Science 6168, pages
233–247. Springer, Heidelberg, July 2010. 18, 28, 49, 50

[BKS18] Z. Brakerski, I. Komargodski, and G. Segev. Multi-input functional encryption
in the private-key setting: Stronger security from weaker assumptions. Journal of
Cryptology, 31(2):434–520, April 2018. 105

[Bla79] G. R. Blakley. Safeguarding cryptographic keys. Proceedings of AFIPS 1979
National Computer Conference, 48:313–317, 1979. 15, 25

[Boy86] C. Boyd. Digital multisignature. Cryptography and Coding, pages 241–246, 1986.
16, 25, 155

[BP97] N. Bari and B. Pfitzmann. Collision-free accumulators and fail-stop signature
schemes without trees. In Advances in Cryptology – EUROCRYPT’97, Lecture
Notes in Computer Science 1233, pages 480–494. Springer, Heidelberg, May 1997.
70

[BPVY00] E. F. Brickell, D. Pointcheval, S. Vaudenay, and M. Yung. Design validations
for discrete logarithm based signature schemes. In PKC 2000: 3rd International
Workshop on Theory and Practice in Public Key Cryptography, Lecture Notes in
Computer Science 1751, pages 276–292. Springer, Heidelberg, January 2000. 161

[Bro00] D. Brown. The exact security of ecdsa. 12 2000. 161

214

BIBLIOGRAPHY BIBLIOGRAPHY

[BSW11] D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and chal-
lenges. In TCC 2011: 8th Theory of Cryptography Conference, Lecture Notes in
Computer Science 6597, pages 253–273. Springer, Heidelberg, March 2011. 14,
24, 105, 109, 110, 149, 150

[Bue76] D. A. Buell. Class groups of quadratic fields. Mathematics of Computation,
30(135):610–623, 1976. 72

[BW88] J. Buchmann and H. C. Williams. A key-exchange system based on imaginary
quadratic fields. Journal of Cryptology, 1(2):107–118, June 1988. 18, 27

[Can01] R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd Annual Symposium on Foundations of Computer Science,
pages 136–145. IEEE Computer Society Press, October 2001. 38

[Cas19] G. Castagnos. Cryptography based on quadratic fields: cryptanalyses, primitives
and protocols. Habilitation à diriger des recherches, Université de Bordeaux,
November 2019. 49

[CC07] G. Castagnos and B. Chevallier-Mames. Towards a DL-based additively ho-
momorphic encryption scheme. In ISC 2007: 10th International Conference on
Information Security, Lecture Notes in Computer Science 4779, pages 362–375.
Springer, Heidelberg, October 2007. 89

[CCL+19] G. Castagnos, D. Catalano, F. Laguillaumie, F. Savasta, and I. Tucker. Two-
party ECDSA from hash proof systems and efficient instantiations. In Advances
in Cryptology – CRYPTO 2019, Part III, Lecture Notes in Computer Science
11694, pages 191–221. Springer, Heidelberg, August 2019. 19, 28, 64, 158

[CCL+20] G. Castagnos, D. Catalano, F. Laguillaumie, F. Savasta, and I. Tucker.
Bandwidth-efficient threshold EC-DSA. In PKC 2020: 23rd International Confer-
ence on Theory and Practice of Public Key Cryptography, Part II, Lecture Notes
in Computer Science 12111, pages 266–296. Springer, Heidelberg, May 2020. 19,
28, 64, 158

[CD98] R. Cramer and I. Damg̊ard. Zero-knowledge proofs for finite field arithmetic;
or: Can zero-knowledge be for free? In Advances in Cryptology – CRYPTO’98,
Lecture Notes in Computer Science 1462, pages 424–441. Springer, Heidelberg,
August 1998. 57

[CDE+18] R. Cramer, I. Damg̊ard, D. Escudero, P. Scholl, and C. Xing. SPD Z2k : Efficient
MPC mod 2k for dishonest majority. In Advances in Cryptology – CRYPTO 2018,
Part II, Lecture Notes in Computer Science 10992, pages 769–798. Springer, Hei-
delberg, August 2018. 208

[CDG+18a] J. Chotard, E. Dufour Sans, R. Gay, D. H. Phan, and D. Pointcheval. Decentral-
ized multi-client functional encryption for inner product. In Advances in Cryp-
tology – ASIACRYPT 2018, Part II, Lecture Notes in Computer Science 11273,
pages 703–732. Springer, Heidelberg, December 2018. 107

[CDG+18b] J. Chotard, E. Dufour Sans, R. Gay, D. H. Phan, and D. Pointcheval. Multi-
client functional encryption with repetition for inner product. Cryptology ePrint
Archive, Report 2018/1021, 2018. https://eprint.iacr.org/2018/1021. 107

215

https://eprint.iacr.org/2018/1021

BIBLIOGRAPHY BIBLIOGRAPHY

[CH89] R. A. Croft and S. P. Harris. Public-key cryptography and reusable shared secret.
Cryptography and Coding, pages 189–201, 1989. 155

[CIL17] G. Castagnos, L. Imbert, and F. Laguillaumie. Encryption switching protocols re-
visited: Switching modulo p. In Advances in Cryptology – CRYPTO 2017, Part I,
Lecture Notes in Computer Science 10401, pages 255–287. Springer, Heidelberg,
August 2017. 18, 27, 51, 52

[CJLN09] G. Castagnos, A. Joux, F. Laguillaumie, and P. Q. Nguyen. Factoring pq2

with quadratic forms: Nice cryptanalyses. In Advances in Cryptology – ASI-
ACRYPT 2009, Lecture Notes in Computer Science 5912, pages 469–486.
Springer, Heidelberg, December 2009. 18, 27

[CKY09] J. Camenisch, A. Kiayias, and M. Yung. On the portability of generalized Schnorr
proofs. In Advances in Cryptology – EUROCRYPT 2009, Lecture Notes in Com-
puter Science 5479, pages 425–442. Springer, Heidelberg, April 2009. 60, 98

[CL84] H. Cohen and H. W. Lenstra Jr. Heuristics on class groups. In Number Theory,
pages 26–36, Berlin, Heidelberg, 1984. Springer Berlin Heidelberg. 72

[CL09] G. Castagnos and F. Laguillaumie. On the security of cryptosystems with
quadratic decryption: The nicest cryptanalysis. In Advances in Cryptology –
EUROCRYPT 2009, Lecture Notes in Computer Science 5479, pages 260–277.
Springer, Heidelberg, April 2009. 18, 27

[CL15] G. Castagnos and F. Laguillaumie. Linearly homomorphic encryption from DDH.
In Topics in Cryptology – CT-RSA 2015, Lecture Notes in Computer Science
9048, pages 487–505. Springer, Heidelberg, April 2015. 17, 27, 42, 46, 49, 52, 63,
64, 65, 66, 69, 89, 90, 93, 207, 229

[CLT18a] G. Castagnos, F. Laguillaumie, and I. Tucker. Practical fully secure unrestricted
inner product functional encryption modulo p. In Advances in Cryptology – ASI-
ACRYPT 2018, Part II, Lecture Notes in Computer Science 11273, pages 733–764.
Springer, Heidelberg, December 2018. 19, 28, 64, 107, 108, 109, 116, 125, 128,
129, 130, 146, 231

[CLT18b] G. Castagnos, F. Laguillaumie, and I. Tucker. Practical fully secure unrestricted
inner product functional encryption modulo p. Cryptology ePrint Archive, Report
2018/791, 2018. https://eprint.iacr.org/2018/791. 117

[CLT20] G. Castagnos, F. Laguillaumie, and I. Tucker. A tighter proof for cca secure inner
product functional encryption: Genericity meets efficiency. 2020. 64, 108

[CMP20] R. Canetti, N. Makriyannis, and U. Peled. Uc non-interactive, proactive, threshold
ecdsa. Cryptology ePrint Archive, Report 2020/492, 2020. https://eprint.
iacr.org/2020/492. 182, 209

[Coc01] C. Cocks. An identity based encryption scheme based on quadratic residues. In
8th IMA International Conference on Cryptography and Coding, Lecture Notes
in Computer Science 2260, pages 360–363. Springer, Heidelberg, December 2001.
149

[Coh00] H. Cohen. A course in computational algebraic number theory. Springer-Verlag,
2000. 48, 49, 50

216

https://eprint.iacr.org/2018/791
https://eprint.iacr.org/2020/492
https://eprint.iacr.org/2020/492

BIBLIOGRAPHY BIBLIOGRAPHY

[Cox89] D. Cox. Primes of the Form X2 + Ny2: Fermat, Class Field Theory, and Complex
Multiplication. Monographs and textbooks in pure and applied mathematics.
Wiley, 1989. 46, 47, 48, 49

[CP93] D. Chaum and T. P. Pedersen. Wallet databases with observers. In Advances in
Cryptology – CRYPTO’92, Lecture Notes in Computer Science 740, pages 89–105.
Springer, Heidelberg, August 1993. 20, 29, 93

[CPP06] B. Chevallier-Mames, P. Paillier, and D. Pointcheval. Encoding-free ElGamal
encryption without random oracles. In PKC 2006: 9th International Conference
on Theory and Practice of Public Key Cryptography, Lecture Notes in Computer
Science 3958, pages 91–104. Springer, Heidelberg, April 2006. 89

[CPP16] G. Couteau, T. Peters, and D. Pointcheval. Encryption switching protocols. In
Advances in Cryptology – CRYPTO 2016, Part I, Lecture Notes in Computer
Science 9814, pages 308–338. Springer, Heidelberg, August 2016. 42

[Cra97] R. Cramer. Modular design of secure yet practical cryptographic protocols. 1997.
57

[CS97] J. Camenisch and M. Stadler. Efficient group signature schemes for large groups
(extended abstract). In Advances in Cryptology – CRYPTO’97, Lecture Notes in
Computer Science 1294, pages 410–424. Springer, Heidelberg, August 1997. 57,
58

[CS98] R. Cramer and V. Shoup. A practical public key cryptosystem provably se-
cure against adaptive chosen ciphertext attack. In Advances in Cryptology –
CRYPTO’98, Lecture Notes in Computer Science 1462, pages 13–25. Springer,
Heidelberg, August 1998. 91

[CS02] R. Cramer and V. Shoup. Universal hash proofs and a paradigm for adaptive
chosen ciphertext secure public-key encryption. In Advances in Cryptology – EU-
ROCRYPT 2002, Lecture Notes in Computer Science 2332, pages 45–64. Springer,
Heidelberg, April / May 2002. 16, 17, 19, 20, 26, 28, 63, 64, 73, 75, 76, 79, 82, 83,
85, 86, 87, 108, 114, 118, 129, 147, 165, 236

[CS03] J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of
discrete logarithms. In Advances in Cryptology – CRYPTO 2003, Lecture Notes
in Computer Science 2729, pages 126–144. Springer, Heidelberg, August 2003. 64,
91, 129

[DDM16] P. Datta, R. Dutta, and S. Mukhopadhyay. Functional encryption for inner prod-
uct with full function privacy. In PKC 2016: 19th International Conference on
Theory and Practice of Public Key Cryptography, Part I, Lecture Notes in Com-
puter Science 9614, pages 164–195. Springer, Heidelberg, March 2016. 106

[DDN00] D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM Journal
on Computing, 30(2):391–437, 2000. 46

[Des88] Y. Desmedt. Society and group oriented cryptography: A new concept. In Ad-
vances in Cryptology – CRYPTO’87, Lecture Notes in Computer Science 293,
pages 120–127. Springer, Heidelberg, August 1988. 16, 25, 155

217

BIBLIOGRAPHY BIBLIOGRAPHY

[DF90] Y. Desmedt and Y. Frankel. Threshold cryptosystems. In Advances in Cryptology
– CRYPTO’89, Lecture Notes in Computer Science 435, pages 307–315. Springer,
Heidelberg, August 1990. 16, 25, 155

[DF02] I. Damg̊ard and E. Fujisaki. A statistically-hiding integer commitment scheme
based on groups with hidden order. In Advances in Cryptology – ASI-
ACRYPT 2002, Lecture Notes in Computer Science 2501, pages 125–142.
Springer, Heidelberg, December 2002. 20, 29, 58, 59, 60, 71, 98, 100

[DG03] I. Damg̊ard and J. Groth. Non-interactive and reusable non-malleable commit-
ment schemes. In 35th Annual ACM Symposium on Theory of Computing, pages
426–437. ACM Press, June 2003. 46

[DGH+13] J.-L. Danger, S. Guilley, P. Hoogvorst, C. Murdica, and D. Naccache. A synthesis
of side-channel attacks on elliptic curve cryptography in smart-cards. Journal of
Cryptographic Engineering, 3, 11 2013. 161

[DJ01] I. Damg̊ard and M. Jurik. A generalisation, a simplification and some applica-
tions of Paillier’s probabilistic public-key system. In PKC 2001: 4th International
Workshop on Theory and Practice in Public Key Cryptography, Lecture Notes in
Computer Science 1992, pages 119–136. Springer, Heidelberg, February 2001. 42,
89

[DJN+20] I. Damg̊ard, T. P. Jakobsen, J. B. Nielsen, J. I. Pagter, and M. B. Østerg̊ard.
Fast threshold ecdsa with honest majority. Cryptology ePrint Archive, Report
2020/501, 2020. https://eprint.iacr.org/2020/501. 209

[DKLs18] J. Doerner, Y. Kondi, E. Lee, and a. shelat. Secure two-party threshold ECDSA
from ECDSA assumptions. In 2018 IEEE Symposium on Security and Privacy,
pages 980–997. IEEE Computer Society Press, May 2018. 156, 201

[DKLs19] J. Doerner, Y. Kondi, E. Lee, and a. shelat. Threshold ECDSA from ECDSA
assumptions: The multiparty case. In 2019 IEEE Symposium on Security and
Privacy, pages 1051–1066. IEEE Computer Society Press, May 2019. 156, 182,
201

[DKO+19] A. P. K. Dalskov, M. Keller, C. Orlandi, K. Shrishak, and H. Shulman. Secur-
ing dnssec keys via threshold ecdsa from generic mpc. IACR Cryptology ePrint
Archive, 2019:889, 2019. 201

[DOT18] P. Datta, T. Okamoto, and J. Tomida. Full-hiding (unbounded) multi-input in-
ner product functional encryption from the k-linear assumption. In PKC 2018:
21st International Conference on Theory and Practice of Public Key Cryptogra-
phy, Part II, Lecture Notes in Computer Science 10770, pages 245–277. Springer,
Heidelberg, March 2018. 106

[DPP20] X. T. Do, D. H. Phan, and D. Pointcheval. Traceable inner product functional
encryption. In Topics in Cryptology – CT-RSA 2020, Lecture Notes in Computer
Science 12006, pages 564–585. Springer, Heidelberg, February 2020. 107

[DPSZ12] I. Damg̊ard, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty compu-
tation from somewhat homomorphic encryption. In Advances in Cryptology
– CRYPTO 2012, Lecture Notes in Computer Science 7417, pages 643–662.
Springer, Heidelberg, August 2012. 210

218

https://eprint.iacr.org/2020/501

BIBLIOGRAPHY BIBLIOGRAPHY

[EHK+13] A. Escala, G. Herold, E. Kiltz, C. Ràfols, and J. Villar. An algebraic framework for
Diffie-Hellman assumptions. In Advances in Cryptology – CRYPTO 2013, Part II,
Lecture Notes in Computer Science 8043, pages 129–147. Springer, Heidelberg,
August 2013. 106

[Fel87] P. Feldman. A practical scheme for non-interactive verifiable secret sharing. In
Proc. of FOCS 87, pages 427–437. IEEE Computer Society, 1987. 35

[FKP16] M. Fersch, E. Kiltz, and B. Poettering. On the provable security of (ec)dsa
signatures. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’16, page 1651–1662, New York, NY, USA,
2016. Association for Computing Machinery. 161

[FKP17] M. Fersch, E. Kiltz, and B. Poettering. On the one-per-message unforgeability of
(EC)DSA and its variants. In TCC 2017: 15th Theory of Cryptography Confer-
ence, Part II, Lecture Notes in Computer Science 10678, pages 519–534. Springer,
Heidelberg, November 2017. 161

[FLOP18] T. K. Frederiksen, Y. Lindell, V. Osheter, and B. Pinkas. Fast distributed RSA key
generation for semi-honest and malicious adversaries. In Advances in Cryptology
– CRYPTO 2018, Part II, Lecture Notes in Computer Science 10992, pages 331–
361. Springer, Heidelberg, August 2018. 156

[FO97] E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove modu-
lar polynomial relations. In Advances in Cryptology – CRYPTO’97, Lecture Notes
in Computer Science 1294, pages 16–30. Springer, Heidelberg, August 1997. 60

[Fuj16] E. Fujisaki. Improving practical UC-secure commitments based on the DDH as-
sumption. In SCN 16: 10th International Conference on Security in Communica-
tion Networks, Lecture Notes in Computer Science 9841, pages 257–272. Springer,
Heidelberg, August / September 2016. 46

[Gal02] S. D. Galbraith. Elliptic curve Paillier schemes. Journal of Cryptology, 15(2):129–
138, March 2002. 89

[Gen04] R. Gennaro. Multi-trapdoor commitments and their applications to proofs of
knowledge secure under concurrent man-in-the-middle attacks. In Advances in
Cryptology – CRYPTO 2004, Lecture Notes in Computer Science 3152, pages
220–236. Springer, Heidelberg, August 2004. 46

[GG18] R. Gennaro and S. Goldfeder. Fast multiparty threshold ECDSA with fast trust-
less setup. In ACM CCS 2018: 25th Conference on Computer and Communica-
tions Security, pages 1179–1194. ACM Press, October 2018. 21, 30, 156, 158, 182,
183, 191, 201, 202, 203, 209

[GG20] R. Gennaro and S. Goldfeder. One round threshold ecdsa with identifiable abort.
Cryptology ePrint Archive, Report 2020/540, 2020. https://eprint.iacr.org/
2020/540. 182, 209

[GGG+14] S. Goldwasser, S. D. Gordon, V. Goyal, A. Jain, J. Katz, F.-H. Liu, A. Sahai,
E. Shi, and H.-S. Zhou. Multi-input functional encryption. In Advances in Cryp-
tology – EUROCRYPT 2014, Lecture Notes in Computer Science 8441, pages
578–602. Springer, Heidelberg, May 2014. 106

219

https://eprint.iacr.org/2020/540
https://eprint.iacr.org/2020/540

BIBLIOGRAPHY BIBLIOGRAPHY

[GGH13a] S. Garg, C. Gentry, and S. Halevi. Candidate multilinear maps from ideal lattices.
In Advances in Cryptology – EUROCRYPT 2013, Lecture Notes in Computer
Science 7881, pages 1–17. Springer, Heidelberg, May 2013. 105

[GGH+13b] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. In 54th
Annual Symposium on Foundations of Computer Science, pages 40–49. IEEE
Computer Society Press, October 2013. 105

[GGHZ16] S. Garg, C. Gentry, S. Halevi, and M. Zhandry. Functional encryption without
obfuscation. In TCC 2016-A: 13th Theory of Cryptography Conference, Part II,
Lecture Notes in Computer Science 9563, pages 480–511. Springer, Heidelberg,
January 2016. 15, 24, 105

[GGN16] R. Gennaro, S. Goldfeder, and A. Narayanan. Threshold-optimal DSA/ECDSA
signatures and an application to bitcoin wallet security. In ACNS 16: 14th In-
ternational Conference on Applied Cryptography and Network Security, Lecture
Notes in Computer Science 9696, pages 156–174. Springer, Heidelberg, June 2016.
21, 30, 156, 201

[Gil99] N. Gilboa. Two party RSA key generation. In Advances in Cryptology –
CRYPTO’99, Lecture Notes in Computer Science 1666, pages 116–129. Springer,
Heidelberg, August 1999. 182

[GJKR96a] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust and efficient sharing
of RSA functions. In Advances in Cryptology – CRYPTO’96, Lecture Notes in
Computer Science 1109, pages 157–172. Springer, Heidelberg, August 1996. 16,
25, 156, 160

[GJKR96b] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust threshold DSS signa-
tures. In Advances in Cryptology – EUROCRYPT’96, Lecture Notes in Computer
Science 1070, pages 354–371. Springer, Heidelberg, May 1996. 155, 161

[GKP+13] S. Goldwasser, Y. T. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zeldovich.
How to run turing machines on encrypted data. In Advances in Cryptology –
CRYPTO 2013, Part II, Lecture Notes in Computer Science 8043, pages 536–
553. Springer, Heidelberg, August 2013. 105

[GKSS20] A. Gagol, J. Kula, D. Straszak, and M. Swietek. Threshold ecdsa for decentralized
asset custody. Cryptology ePrint Archive, Report 2020/498, 2020. https://
eprint.iacr.org/2020/498. 182, 209

[GM84] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and
System Sciences, 28(2):270–299, 1984. 13, 17, 23, 26, 37, 39, 42

[GMR85] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof-systems (extended abstract). In 17th Annual ACM Symposium on Theory
of Computing, pages 291–304. ACM Press, May 1985. 56

[GMR88] S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme se-
cure against adaptive chosen-message attacks. SIAM Journal on Computing,
17(2):281–308, April 1988. 45

220

https://eprint.iacr.org/2020/498
https://eprint.iacr.org/2020/498

BIBLIOGRAPHY BIBLIOGRAPHY

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In 19th Annual ACM
Symposium on Theory of Computing, pages 218–229. ACM Press, May 1987. 16,
25, 35, 37

[GMY06] J. A. Garay, P. D. MacKenzie, and K. Yang. Strengthening zero-knowledge pro-
tocols using signatures. Journal of Cryptology, 19(2):169–209, April 2006. 98,
179

[GO94] O. Goldreich and Y. Oren. Definitions and properties of zero-knowledge proof
systems. Journal of Cryptology, 7(1):1–32, December 1994. 37

[Gol01] O. Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University
Press, Cambridge, UK, 2001. 36, 57

[GPS06] M. Girault, G. Poupard, and J. Stern. On the fly authentication and signature
schemes based on groups of unknown order. Journal of Cryptology, 19(4):463–487,
October 2006. 20, 29, 94, 96, 202, 237, 240

[GPV08] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and
new cryptographic constructions. In 40th Annual ACM Symposium on Theory of
Computing, pages 197–206. ACM Press, May 2008. 54, 55

[Gro04] J. Groth. Honest Verifier Zero-knowledge Arguments Applied. PhD thesis, Den-
mark, 2004. 98, 179

[GVW12] S. Gorbunov, V. Vaikuntanathan, and H. Wee. Functional encryption with
bounded collusions via multi-party computation. In Advances in Cryptology
– CRYPTO 2012, Lecture Notes in Computer Science 7417, pages 162–179.
Springer, Heidelberg, August 2012. 105, 149

[HJPT98] D. Hühnlein, M. J. Jacobson Jr., S. Paulus, and T. Takagi. A cryptosystem based
on non-maximal imaginary quadratic orders with fast decryption. In Advances in
Cryptology – EUROCRYPT’98, Lecture Notes in Computer Science 1403, pages
294–307. Springer, Heidelberg, May / June 1998. 66

[HL10] C. Hazay and Y. Lindell. Efficient Secure Two-Party Protocols: Techniques and
Constructions. Springer-Verlag, 1st edition, 2010. 162

[HM89] J. L. Hafner and K. S. McCurley. A rigorous subexponential algorithm for com-
putation of class groups. Journal of the American mathematical society, 2(4):837–
850, 1989. 49

[HM00] S. Hamdy and B. Möller. Security of cryptosystems based on class groups of
imaginary quadratic orders. In Advances in Cryptology – ASIACRYPT 2000,
Lecture Notes in Computer Science 1976, pages 234–247. Springer, Heidelberg,
December 2000. 49, 50

[HMRT12] C. Hazay, G. L. Mikkelsen, T. Rabin, and T. Toft. Efficient RSA key generation
and threshold Paillier in the two-party setting. In Topics in Cryptology – CT-
RSA 2012, Lecture Notes in Computer Science 7178, pages 313–331. Springer,
Heidelberg, February / March 2012. 46

221

BIBLIOGRAPHY BIBLIOGRAPHY

[HO09] B. Hemenway and R. Ostrovsky. Lossy trapdoor functions from smooth homomor-
phic hash proof systems. In Electronic Colloquium on Computational Complexity,
Report, pages 09–127, 2009. 77

[HO12] B. Hemenway and R. Ostrovsky. Extended-DDH and lossy trapdoor functions. In
PKC 2012: 15th International Conference on Theory and Practice of Public Key
Cryptography, Lecture Notes in Computer Science 7293, pages 627–643. Springer,
Heidelberg, May 2012. 69

[HPT99] M. Hartmann, S. Paulus, and T. Takagi. NICE - new ideal coset encryption.
In Cryptographic Hardware and Embedded Systems – CHES’99, Lecture Notes in
Computer Science 1717, pages 328–339. Springer, Heidelberg, August 1999. 18,
27

[HS06] S. Hamdy and F. Saidak. Arithmetic properties of class numbers of imagi-
nary quadratic fields. JP Journal of Algebra, Number Theory and Application,
6(1):129–148, 2006. 49, 72

[Jac99] M. J. Jacobson. Subexponential class group computation in quadratic orders.
Shaker Verlag GmbH, Technische Universität Darmstadt, 1999. 49

[JL13] M. Joye and B. Libert. Efficient cryptosystems from 2k-th power residue symbols.
In Advances in Cryptology – EUROCRYPT 2013, Lecture Notes in Computer
Science 7881, pages 76–92. Springer, Heidelberg, May 2013. 42, 208

[JSSS20] J. Jancar, V. Sedlacek, P. Svenda, and M. Sys. Minerva: The curse of ecdsa
nonces. IACR-CHES-2020, 2020. 161

[JSW08] M. J. Jacobson Jr., R. Scheidler, and D. Weimer. An adaptation of the NICE
cryptosystem to real quadratic orders. In AFRICACRYPT 08: 1st International
Conference on Cryptology in Africa, Lecture Notes in Computer Science 5023,
pages 191–208. Springer, Heidelberg, June 2008. 18, 27

[JW09] M. Jacobson and H. Williams. Solving the Pell Equation. CMS Books in Mathe-
matics. Springer-Verlag, New York, 2009. 18, 27

[Kap73] P. Kaplan. Divisibilité par 8 du nombr des classes des corps quadratiques dont
le 2-groupe des classes est cyclique, et réciprocité biquadratique. J. Math. Soc.
Japan, 25(4):596–608, 10 1973. 49

[KSW08] J. Katz, A. Sahai, and B. Waters. Predicate encryption supporting disjunctions,
polynomial equations, and inner products. In Advances in Cryptology – EURO-
CRYPT 2008, Lecture Notes in Computer Science 4965, pages 146–162. Springer,
Heidelberg, April 2008. 106, 148

[KY19] S. Katsumata and S. Yamada. Non-zero inner product encryption schemes from
various assumptions: LWE, DDH and DCR. In PKC 2019: 22nd International
Conference on Theory and Practice of Public Key Cryptography, Part II, Lecture
Notes in Computer Science 11443, pages 158–188. Springer, Heidelberg, April
2019. 15, 24, 106, 109, 149

[Lag80] J. Lagarias. Worst-case complexity bounds for algorithms in the theory of integral
quadratic forms. Journal of Algorithms, 1(2):142 – 186, 1980. 66, 70

222

BIBLIOGRAPHY BIBLIOGRAPHY

[Lin17a] Y. Lindell. Fast secure two-party ECDSA signing. In Advances in Cryptology –
CRYPTO 2017, Part II, Lecture Notes in Computer Science 10402, pages 613–
644. Springer, Heidelberg, August 2017. 21, 30, 156, 157, 159, 163, 167, 168, 169,
170, 179, 180, 182, 241

[Lin17b] Y. Lindell. How to Simulate It – A Tutorial on the Simulation Proof Technique,
pages 277–346. Springer International Publishing, Cham, 2017. 38

[Lip03] H. Lipmaa. On diophantine complexity and statistical zero-knowledge arguments.
In Advances in Cryptology – ASIACRYPT 2003, Lecture Notes in Computer Sci-
ence 2894, pages 398–415. Springer, Heidelberg, November / December 2003. 60

[Lip12] H. Lipmaa. Secure accumulators from euclidean rings without trusted setup. In
ACNS 12: 10th International Conference on Applied Cryptography and Network
Security, Lecture Notes in Computer Science 7341, pages 224–240. Springer, Hei-
delberg, June 2012. 18, 27, 71

[LM19] R. W. F. Lai and G. Malavolta. Subvector commitments with application to
succinct arguments. In Advances in Cryptology – CRYPTO 2019, Part I, Lecture
Notes in Computer Science 11692, pages 530–560. Springer, Heidelberg, August
2019. 71, 179, 203

[LN18] Y. Lindell and A. Nof. Fast secure multiparty ECDSA with practical distributed
key generation and applications to cryptocurrency custody. In ACM CCS 2018:
25th Conference on Computer and Communications Security, pages 1837–1854.
ACM Press, October 2018. 156, 158, 182, 201, 202, 203, 209

[LOS+10] A. B. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters. Fully secure
functional encryption: Attribute-based encryption and (hierarchical) inner prod-
uct encryption. In Advances in Cryptology – EUROCRYPT 2010, Lecture Notes
in Computer Science 6110, pages 62–91. Springer, Heidelberg, May / June 2010.
149

[MR01] P. D. MacKenzie and M. K. Reiter. Two-party generation of DSA signatures.
In Advances in Cryptology – CRYPTO 2001, Lecture Notes in Computer Science
2139, pages 137–154. Springer, Heidelberg, August 2001. 21, 30, 156, 163, 182

[MR04a] P. D. MacKenzie and M. K. Reiter. Two-party generation of DSA signatures.
Int. J. Inf. Sec., 2(3-4):218–239, 2004. 155

[MR04b] D. Micciancio and O. Regev. Worst-case to average-case reductions based on
Gaussian measures. In 45th Annual Symposium on Foundations of Computer
Science, pages 372–381. IEEE Computer Society Press, October 2004. 55

[MR07] D. Micciancio and O. Regev. Worst-case to average-case reductions based on
gaussian measures. SIAM J. Comput., 37(1):267–302, 2007. 117

[MY04] P. D. MacKenzie and K. Yang. On simulation-sound trapdoor commitments.
In Advances in Cryptology – EUROCRYPT 2004, Lecture Notes in Computer
Science 3027, pages 382–400. Springer, Heidelberg, May 2004. 46

[NP15] M. Nandi and T. Pandit. Generic conversions from cpa to cca secure func-
tional encryption. Cryptology ePrint Archive, Report 2015/457, 2015. https:
//eprint.iacr.org/2015/457. 110

223

https://eprint.iacr.org/2015/457
https://eprint.iacr.org/2015/457

BIBLIOGRAPHY BIBLIOGRAPHY

[NS98] D. Naccache and J. Stern. A new public key cryptosystem based on higher
residues. In ACM CCS 98: 5th Conference on Computer and Communications
Security, pages 59–66. ACM Press, November 1998. 42

[O’N10] A. O’Neill. Definitional issues in functional encryption. Cryptology ePrint
Archive, Report 2010/556, 2010. http://eprint.iacr.org/2010/556. 14, 24,
105, 110, 149, 152

[OPJM10] M. Osadchy, B. Pinkas, A. Jarrous, and B. Moskovich. Scifi - a system for secure
face identification. In 2010 IEEE Symposium on Security and Privacy (SP), pages
239–254, Los Alamitos, CA, USA, may 2010. IEEE Computer Society. 42

[Orl11] C. Orlandi. Is multiparty computation any good in practice? In 2011 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 5848–5851, 2011. 210

[OT10] T. Okamoto and K. Takashima. Fully secure functional encryption with gen-
eral relations from the decisional linear assumption. In Advances in Cryptol-
ogy – CRYPTO 2010, Lecture Notes in Computer Science 6223, pages 191–208.
Springer, Heidelberg, August 2010. 149

[OU98] T. Okamoto and S. Uchiyama. A new public-key cryptosystem as secure as factor-
ing. In Advances in Cryptology – EUROCRYPT’98, Lecture Notes in Computer
Science 1403, pages 308–318. Springer, Heidelberg, May / June 1998. 42

[Pai99] P. Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In Advances in Cryptology – EUROCRYPT’99, Lecture Notes in Com-
puter Science 1592, pages 223–238. Springer, Heidelberg, May 1999. 17, 18, 27,
33, 40, 42, 43, 89

[PAR20] PARI Group, Univ. Bordeaux. PARI/GP version 2.11.4, 2020. available from
http://pari.math.u-bordeaux.fr/. 51, 158, 159, 179

[Pie19] K. Pietrzak. Simple verifiable delay functions. In ITCS 2019: 10th Innovations
in Theoretical Computer Science Conference, pages 60:1–60:15. LIPIcs, January
2019. 71

[PR05] R. Pass and A. Rosen. Concurrent non-malleable commitments. In 46th Annual
Symposium on Foundations of Computer Science, pages 563–572. IEEE Computer
Society Press, October 2005. 46

[PS96] D. Pointcheval and J. Stern. Security proofs for signature schemes. In Advances in
Cryptology – EUROCRYPT’96, Lecture Notes in Computer Science 1070, pages
387–398. Springer, Heidelberg, May 1996. 160

[PS00] G. Poupard and J. Stern. Short proofs of knowledge for factoring. In PKC 2000:
3rd International Workshop on Theory and Practice in Public Key Cryptography,
Lecture Notes in Computer Science 1751, pages 147–166. Springer, Heidelberg,
January 2000. 202

[PT00] S. Paulus and T. Takagi. A new public-key cryptosystem over a quadratic order
with quadratic decryption time. Journal of Cryptology, 13(2):263–272, March
2000. 18, 27, 48

224

http://eprint.iacr.org/2010/556
http://pari.math.u-bordeaux.fr/

BIBLIOGRAPHY BIBLIOGRAPHY

[PV96] D. Pointcheval and S. Vaudenay. On provable security for digital signature algo-
rithms, 1996. 161

[PW08] C. Peikert and B. Waters. Lossy trapdoor functions and their applications. In
40th Annual ACM Symposium on Theory of Computing, pages 187–196. ACM
Press, May 2008. 209

[SA19] N. P. Smart and Y. T. Alaoui. Distributing any elliptic curve based protocol: With
an application to mixnets. IACR Cryptology ePrint Archive, 2019:768, 2019. 201

[Sch90] C.-P. Schnorr. Efficient identification and signatures for smart cards. In Advances
in Cryptology – CRYPTO’89, Lecture Notes in Computer Science 435, pages 239–
252. Springer, Heidelberg, August 1990. 20, 29, 59, 93

[Sch91] C.-P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptol-
ogy, 4(3):161–174, January 1991. 16, 25, 156, 160, 167, 188

[SG98] V. Shoup and R. Gennaro. Securing threshold cryptosystems against chosen
ciphertext attack. In Advances in Cryptology – EUROCRYPT’98, Lecture Notes
in Computer Science 1403, pages 1–16. Springer, Heidelberg, May / June 1998.
155

[Sha79] A. Shamir. How to share a secret. Communications of the Association for Com-
puting Machinery, 22(11):612–613, November 1979. 15, 25, 35

[Sha84] A. Shamir. Identity-based cryptosystems and signature schemes. In Advances in
Cryptology – CRYPTO’84, Lecture Notes in Computer Science 196, pages 47–53.
Springer, Heidelberg, August 1984. 149

[Sho97] V. Shoup. Lower bounds for discrete logarithms and related problems. In Ad-
vances in Cryptology – EUROCRYPT’97, Lecture Notes in Computer Science
1233, pages 256–266. Springer, Heidelberg, May 1997. 39

[Sho00] V. Shoup. Practical threshold signatures. In Advances in Cryptology – EURO-
CRYPT 2000, Lecture Notes in Computer Science 1807, pages 207–220. Springer,
Heidelberg, May 2000. 155

[SS01] D. R. Stinson and R. Strobl. Provably secure distributed Schnorr signatures and
a (t, n) threshold scheme for implicit certificates. In ACISP 01: 6th Australasian
Conference on Information Security and Privacy, Lecture Notes in Computer Sci-
ence 2119, pages 417–434. Springer, Heidelberg, July 2001. 16, 25, 156, 160

[SS10] A. Sahai and H. Seyalioglu. Worry-free encryption: functional encryption with
public keys. In ACM CCS 2010: 17th Conference on Computer and Communica-
tions Security, pages 463–472. ACM Press, October 2010. 15, 24, 105

[Ste11] D. Stehlé. Euclidean lattices: algorithms and cryptography. Habilitation à diriger
des recherches, Ecole normale supérieure de lyon - ENS LYON, October 2011. 54

[SW05] A. Sahai and B. R. Waters. Fuzzy identity-based encryption. In Advances in
Cryptology – EUROCRYPT 2005, Lecture Notes in Computer Science 3494, pages
457–473. Springer, Heidelberg, May 2005. 105, 149

225

BIBLIOGRAPHY BIBLIOGRAPHY

[Tom19] J. Tomida. Tightly secure inner product functional encryption: Multi-input and
function-hiding constructions. In Advances in Cryptology – ASIACRYPT 2019,
Part III, Lecture Notes in Computer Science 11923, pages 459–488. Springer,
Heidelberg, December 2019. 106

[Van92] S. Vanstone. Responses to nist’s proposal. Communications of the ACM, 35:50–
52, July 1992. (communicated by John Anderson). 159

[Wee17] H. Wee. Attribute-hiding predicate encryption in bilinear groups, revisited. In
TCC 2017: 15th Theory of Cryptography Conference, Part I, Lecture Notes in
Computer Science 10677, pages 206–233. Springer, Heidelberg, November 2017.
106, 109, 150, 151, 152

[Wes18] B. Wesolowski. Efficient verifiable delay functions. Cryptology ePrint Archive,
Report 2018/623, 2018. https://eprint.iacr.org/2018/623. Accepted to EU-
ROCRYPT 2019. 18, 27

[Wes19] B. Wesolowski. Efficient verifiable delay functions. In Advances in Cryptology –
EUROCRYPT 2019, Part III, Lecture Notes in Computer Science 11478, pages
379–407. Springer, Heidelberg, May 2019. 71

[Yao82] A. C.-C. Yao. Protocols for secure computations (extended abstract). In 23rd
Annual Symposium on Foundations of Computer Science, pages 160–164. IEEE
Computer Society Press, November 1982. 16, 25

[ZMY17] S. Zhang, Y. Mu, and G. Yang. Achieving ind-cca security for functional encryp-
tion for inner products. In Information Security and Cryptology, pages 119–139,
Cham, 2017. Springer International Publishing. 106, 112

226

https://eprint.iacr.org/2018/623

List of Abbreviations

CCA Chosen Ciphertext Attack. 149

CRHF Collision Resistant Hash Function. 44, 120, 121, 123, 135, 137, 140, 142, 143, 147

DCR Decision Composite Residuosity. 20, 29, 40, 42, 43, 50, 51, 64, 68, 69, 73, 75, 91, 106–109,
115, 129–131, 142, 143, 145–148, 152, 155, 157, 165, 166, 207, 208, 231, 237

DDH Decision Diffie Hellman. 40, 42, 63, 64, 68, 69, 73, 74, 77, 79, 81, 88, 89, 93, 106–108,
113, 115, 125, 128, 130, 131, 142–144, 146, 147, 152, 199–201, 207, 229, 231

DDH-f Extended Decision Diffie Hellman in < f >. 10, 19, 28, 63, 64, 69, 70, 73–75, 78, 80,
82, 88–91, 93, 108, 109, 113, 117, 125, 129–131, 133, 134, 142, 143, 145, 152, 229

DDH-CL Decision Diffie Hellman in the CL framework. 10, 63, 69, 73, 89, 93

DE Double Encoding. 165, 166, 170, 175, 177, 195

DH Diffie Hellman. 147

DL Discrete Logarithm. 39, 49, 50, 59, 64, 65, 68–72, 74, 75, 89, 94, 113, 131, 159, 160, 168,
173, 175–177, 183

DPT Deterministic Polynomial Time. 41, 44, 45, 65, 76, 86, 109, 148

DSA Digital Signature Algorithm. 159–161

EC Elliptic Curve. 159, 160, 166, 167, 173, 177, 179, 180, 185, 187, 199, 201, 202

EC-DSA Elliptic Curve Digital Signature Algorithm. 11, 16–18, 21, 22, 25, 26, 28, 30, 31,
39, 43, 44, 155–164, 166–171, 174–178, 180–184, 187, 188, 190–192, 194, 195, 199–202,
207–209, 229, 241

EDDH Extended Decision Diffie Hellman. 69

EPHF Extended Projective Hash Function. 85–87, 112, 119, 125, 137, 147, 235, 236

FE Functional Encryption. 105–111, 125, 128–134, 143, 144, 150, 229

HSM-CL Hard Subroup Membership Problem. 10, 11, 19, 21, 28, 30, 63, 64, 68, 69, 73–75,
78, 79, 82, 88, 89, 91–94, 98, 99, 108, 109, 113, 116, 125, 128–133, 142, 144–148, 152, 157,
158, 164–166, 177, 178, 180–184, 187, 207, 229, 231, 237

IBR Identity Based Revocation. 106, 109, 149

227

List of Abbreviations List of Abbreviations

IPFE Inner Product Functional Encryption. 10, 11, 63, 64, 105–109, 112, 114–119, 124–126,
128–131, 135–140, 142–150, 152, 209, 229, 231, 236

lcm Lowest Common Multiple. 64, 96, 97, 179, 181, 187, 201

LO Low Order. 70–73, 98, 99, 101, 102, 179, 183, 184, 192, 194, 199–201

LWE Learning With Errors. 106, 107, 130, 131, 143, 144, 210

MPC Multi-Party Computation. 9, 34

NIPE Non Zero Inner Product Encryption. 106, 148, 149

NIST National Institute of Standards and Technology. 161, 179, 180, 201

NIZK Non Interactive Zero Knowledge. 162

OTS One Time Signature. 135, 142, 143

OWF One Way Function. 164–166

PHF Projective Hash Function. 10, 11, 63, 64, 73, 74, 76–79, 81–85, 87, 89, 91, 92, 107–109,
112, 113, 115, 118, 124–126, 129, 135–137, 139, 140, 147, 150, 152, 157, 163–168, 170,
172, 173, 177, 207, 229, 234–236

PKE Public Key Encryption. 10, 41, 42, 69, 79, 83, 85, 89, 91, 92, 105, 108, 114, 118, 119,
125, 136–138, 150, 157, 164, 167, 175, 181–183, 187, 191

PoK Proof of Knowledge. 169, 199, 201

PPT Probabilistic Polynomial Time. 34, 39–46, 56, 59, 69–74, 76, 84, 86, 109–111, 148, 150,
151, 159, 165, 177, 183, 195, 241

PT Polynomial Time. 34, 38, 56, 57, 59, 95, 96, 100, 109, 110, 148, 164, 168

QR Quadratic Residuosity. 69

SD Subgroup Decomposition. 165, 166

SMP Subgroup Membership Problem. 112, 115, 119, 124, 170, 177, 200, 201

SNARK Succinct Non-interactive Argument of Knowledge. 71

SR Strong Root. 70–73, 98, 99, 101, 102, 179, 183, 184, 187, 192, 194, 199–201

UC Universally Composable. 38, 209

VSS Verifiable Secret Sharing. 35, 36, 188

ZK Zero Knowledge. 56, 60, 94, 96, 167, 170, 175, 188, 192, 208

ZKAoK Zero Knowledge Argument of Knowledge. 58, 98–100, 102, 103, 179, 182–184, 187–
193, 199, 202, 229

ZKP Zero Knowledge Proof. 169, 179, 180, 182, 187, 200–202

ZKPoK Zero Knowledge Proof of Knowledge. 57, 60, 94–97, 162, 169, 179, 181, 184–190,
192–194, 199–202, 229, 230, 237, 238

228

List of Figures

2.1 Paillier’s linearly homomorphic encryption scheme 43
2.2 The Schnorr ZKPoK for knowldge of w such that x = gw. 60

3.1 Group generator Gen . 67
3.2 Linearly homomorphic encryption scheme E from a homomorphic PHF 83
3.3 Linearly homomorphic encryption scheme Πcl from [CL15] 90
3.4 Enhanced linearly homomorphic encryption scheme Πddh-f from DDH-f 91
3.5 linearly homomorphic encryption scheme Πhsm-cl from HSM-CL 92
3.6 Reductions between assumptions and ind-cpa security of CL variants 93
3.7 The ZKPoK Σcl-dl for Rcl-dl . 95
3.8 The ZKPoK Σlcm-dl for Rlcm-dl where y = lcm(1, 2, 3, . . . , 2d − 1) 97
3.9 ZKAoK for REnc. 100
3.10 ZKAoK for Rcl-dl. 103

4.1 IPFE that is ind-fe-cpa-secure from projective hash functions 126
4.2 Security games for proof of Theorem 4.21. 127
4.3 FE scheme computing inner product in Z from the HSM-CL assumption. . . . 129
4.4 FE scheme computing inner products in Z from the DDH-f assumption. 130
4.5 Stateful FE scheme computing inner products in Z/qZ from HSM-CL. 132
4.6 Stateful FE scheme for inner products over Z/qZ from DDH-f 134
4.7 IPFE that is ind-fe-cca-secure from projective hash functions 136
4.8 Evolution of security games for proof of Theorem 4.26. 138
4.9 Running Example 1 – ind-fe-cca-secure IPFE scheme from the DDH assumption. 143
4.10 Running Example 2 – ind-fe-cca-secure IPFE from the HSM-CL assumption. . 144
4.11 Running Example 3 – ind-fe-cca-secure IPFE from the DDH-f assumption. . . 145

5.1 The FRzk functionality . 162
5.2 The Fcom functionality . 162
5.3 The FRcom-zk functionality . 163
5.4 The Fec-dsa functionality . 163
5.5 Two-Party EC-DSA Key Generation and Signing Protocols from PHFs 168
5.6 Simulation secure two-party EC-DSA from the HSM-CL assumption. 178
5.7 Experimental results (timings in ms, sizes in bits) 180
5.8 Threshold CL setup used in IKeyGen . 185
5.9 Threshold Key Generation . 188
5.10 Threshold signature protocol . 189
5.11 Simulating P1 in IKeyGen . 192
5.11 Simulating P1 in ISign . 194
5.12 Comparative sizes (in bits), timings (in ms) and communication cost (in Bytes) 204

229

LIST OF FIGURES LIST OF FIGURES

.1 The ZKPoK for Rcl-dl . 238

230

List of Tables

2.1 Sizes in bits required to build cryptosystems arising from DCR and from the
CL framework . 50

2.2 Comparing timings for one multiplication in class groups and in Z/N2Z 51

3.1 Summary of assumptions in the CL framework 73

4.1 Comparing bit sizes of our modular HSM-CL-based IPFE of Fig. 4.5 to the
DCR scheme of [ALS16] . 146

4.2 Timings: modular IPFE from HSM-CL [CLT18a] vs. IPFE from DCR [ALS16] 146
4.3 Comparing our IPFE scheme and that of [BBL17] from DDH 147
4.4 Our ind-fe-cca-secure IPFE from HSM-CL and DCR vs. the DCR scheme of

[BBL17] . 148

231

Appendices

232

A Comparing our PHF properties to those of [BBL17]
Chosen plaintext security. We here demonstrate that any PHF which can be used to
instantiate the generic construction of [BBL17] for inner product functional encryption secure
against chosen plaintext attacks is key homomorphic and vector-smooth.

We refer the reader to [BBL17] for formal definitions of strong diversity, translation indis-
tinguishability, and universal translation indistinguishability.

Lemma A.1. Consider a ring R, an integer ` > 0, a subgroup membership problem SM :=
(X,L,W, R), and associated PHF H. Consider a function hk⊥ : X\L 7→ Khk, an element
g⊥ ∈ Π, and two positive integers nf and M . For H to meet the properties required in [BBL17]
to build ind-fe-cpa inner product functional encryption schemes, it must be key homomorphic,
(hk⊥,M, εti)-translation-indistinguishable, (hk⊥, g⊥, nf)-strongly diverse, and one must chose
M := (nf/`)1/2. If the above holds, then H is (` · εti)-vector-smooth over X on G⊥ := 〈g⊥〉.

Proof. Consider a PHF H as described in the lemma. For i ∈ [`], sample hki ← hashkg(SM)
independently, let hk := (hk1, . . . , hk`) and hp ← projkg(hk). Consider m0 6= m1 ∈ M, and
denote m := m0 −m1. Consider vectors (b1, . . . , b`) as in Definition 4.10. Let X ←↩ X\L,
and Y ←↩ U(G⊥). Then H is δvs(`)-vector-smooth over X on G⊥ if the distributions induced
by U and V are δvs(`)-close, where:

U := {X, {projkg(hki)}i∈[`], {〈hk, bi〉}i∈[`−1], hash(〈hk, b`〉, X) · Y } and

V :=
{
X, {projkg(hki)}i∈[`], {〈hk, bi〉}i∈[`−1], hash(〈hk, b`〉, X)

}
.

We first use the (hk⊥,M, εti)-translation-indistinguishability of H, and replace each hki by
hki + ai · hk⊥(X) for ai ←↩ {−M, . . . ,M} satisfying a ∈ m. By repeated sampling, it holds
that V′ is `εti-close to V, where:

V′ := {X,{projkg(hki + ai · hk⊥(X))}i∈[`], {〈hk+ a · hk⊥(X), bi〉}i∈[`−1],

hash(〈hk+ a · hk⊥(X), b`〉, X)}

By construction, bi ∈m⊥ for i ∈ [`− 1], furthermore, by the homomorphic properties of H it
holds that:

V′ := {X,{projkg(hki + ai · hk⊥(X))}i∈[`], {〈hk, bi〉}i∈[`−1],

hash(〈hk, b`〉, X) · hash(hk⊥(X), X)〈a,b`〉}

From the (hk⊥, g⊥, nf)-strong diversity of H, we can now write:

V′ = {X,{projkg(hki)}i∈[`], {〈hk, bi〉}i∈[`−1], hash(〈hk, b`〉, X) · g〈a,b`〉⊥ }

Now since g⊥ is of order nf ; a is sampled uniformly in {−(nf/`)1/2, . . . , (nf/`)1/2} subject

on the condition a ∈ 〈m〉, and 〈m, b`〉 6= 0, the distribution induced by g
〈a,b`〉
⊥ is the uniform

distribution in the subgroup G⊥ = 〈g⊥〉. Thus:

V′ = U = {X,hp, {〈hk, bi〉}i∈[`−1], hash(〈hk, b`〉, X) · Y |Y ←↩ U(G⊥)}

234

Chosen ciphertext security. We here demonstrate that any PHF which can be used to
instantiate the generic construction of [BBL17] for inner product functional encryption secure
against chosen ciphertext attacks is key homomorphic and vector-universal.

We refer the reader to [BBL17] for the definitions of 2-universality and universal translation
indistinguishability.

Lemma A.2. Consider a ring R, an integer ` > 0, a subgroup membership problem SM :=
(X,L,W, R), and associated EPHF eH := (ehashkg, eprojkg, ehash, eprojhash). Consider a func-
tion ehashkg′, taking as input a security parameter 1λ and outputting a hashing key ehk in some
set K ′ehk ⊆ Kehk, an element g⊥ ∈ Π, εuti, ε2u > 0, positive integers nf , M and a subset Σ of Z.
For eH to meet the properties required in [BBL17] to build ind-fe-cca inner product functional
encryption schemes, it must be key-homomorphic, projection-key-homomorphic, (ehashkg′, M,
εuti)-universally-translation-indistinguishable and it must hold that for any t ∈ Σ, the PHF
(t · ehashkg′, eprojkg, ehash, eprojhash) is ε2u-universal2, where the algorithm t · ehashkg′ runs
ehashkg′ and multiplies the output by t. Furthermore one must chose M := (nf/`)1/2, and
Σ := {1, . . . , nf − 1}. If the above holds, then H is (2` · εuti + ε2u)-vector-universal.

Proof. Consider an EPHF eH := (ehashkg, eprojkg, ehash, eprojhash) as in the lemma state-
ment. Consider any m ∈ {x0 − x1 | x0 6= x1 ∈ M} and vectors (b1, . . . , b`) ∈ R`×` as in
Definition 4.15. For i ∈ [`], let ehki ← ehashkg(SM), and denote ehk := (ehk1, . . . , ehk`). The
EPHF eH is δvu(`)-vector-universal if for any ehp ∈ (K

êhp
)`; any k ∈ K s.t. k /∈ m⊥; any

(x∗, e∗) ∈ X̂×E, (x, e) ∈ X̂\L×E, s.t. (x, e) 6= (x∗, e∗), and for any (v1, . . . ,v`−1) ∈ (Kehk)`−1;
(π∗1, . . . , π

∗
`) ∈ Π` and π ∈ Π it holds that:

Pr
[
ehash(〈ehk,k〉, x, e) = π ∧ (ehash(ehki, x∗, e∗) = π∗i for i ∈ [`])

∧ eprojkg(ehk) = ehp ∧ (bTj · ehk = vj for j ∈ [`− 1])
]

6 δ2vu(`) · Pr
[

(ehash(ehki, x∗, e∗) = π∗i for i ∈ [`])

∧ eprojkg(ehk) = ehp ∧ (bTj · ehk = vj for j ∈ [`− 1])
]
.

Let E1 denote the event ‘ehash(ehki, x∗, e∗) = π∗i for i ∈ [`]’, E2 denote the event ‘eprojkg(ehk)
= ehp’, and E3 denote the event ‘bTj · ehk = vj for j ∈ [`− 1]’. Let X be a random variable
following the same distribution as ehash(〈ehk,k〉, x, e) and denote E0 the event ‘X = π’.

We first use the (ehashkg′,M, εuti)-universal-translation-indistinguishability of eH. To this
end sample ehk′ ←↩ ehashkg′(SM). One also samples ehk′′i ←↩ ehashkg(SM) and αi ←↩ {−M,
. . . ,M} for i ∈ [`], such that α ∈ 〈m〉. Since Kehk′ ⊆ R2a, and α ∈ R` we denote ehk′α :=
(ehk′0 ·α, . . . , ehk′2a−1 ·α) ∈ (R`)2a.

Consequently:

1. Consider the random variable

X ′ := ehash(kT · (ehk′′ + ehk′ ·α), x, e).

By the key homomorphism of eH, and denoting t := 〈α,k〉 ∈ R, it holds that

X ′ = ehash(kT · ehk′′, x, e) · ehash(t · ehk′, x, e).

Let E′0 denote the event X ′ = π. If we consider random variables Y ′′ := ehash(kT ·
ehk′′, x, e) and Y ′ := ehash(t · ehk′, x, e)

2. Event E′1 denotes ‘ehash(ehk′′i +αiehk
′, x∗, e∗) = π∗i for i ∈ [`]’. Or equivalently ehash(ehk′′i ,

x∗, e∗) · ehash(ehk′, x∗, e∗)αiπ∗i .

235

3. From the projection key homomorphism of eH, event E′2 is:

ehp = eprojkg(ehk′′ + ehk′ ·α) = eprojkg(ehk′′) · eprojkg(ehk′)α

4. Since α ∈ 〈m〉 and by construction, bi ∈m⊥ for i ∈ [`− 1], event E′3 is

bTj · (ehk′′ +α · ehk′) = bTj · ehk′′ = vj for j ∈ [`− 1].

From the (ehashkg′,M, εuti)-universal-translation-indistinguishability of eH:

|Pr[E0 ∧ E1 ∧ E2 ∧ E3]− Pr[E′0 ∧ E′1 ∧ E′2 ∧ E′3]| 6 ` · εuti.

Let us now consider the probability Pr[E′0 ∧E′1 ∧E′2 ∧E′3] 6 Pr[E′0|E′1 ∧E′2 ∧E′3]. We denote
p = Pr[E′0|E′1 ∧ E′2 ∧ E′3].

We first observe that event E′3 is independent of ehk′. So the only fixed information on ehk′

comes from event E′2 which, at most, fixes the value of ehp′ := eprojkg(ehk′); and E′1 fixing the
value of µ∗ := ehash(ehk′, x∗, e∗).

Since, from the norm bounds on k ∈ K and α, it holds that t = 〈α,k〉 ∈ {1, . . . , nf − 1} –
the PHF (t · ehashkg′, eprojkg, ehash, eprojhash) is ε2u-universal2. Thus, for any π′ ∈ Π, it holds
that:

Pr[π′ =ehash(tehk′, x, e) ∧ µ∗ = ehash(ehk′, x∗, e∗) ∧ ehp′ = eprojkg(ehk′)]
6 ε2u · Pr[µ∗ = ehash(ehk′, x∗, e∗) ∧ ehp′ = eprojkg(ehk′)].

Since ehk′′ and ehk′ are sampled independently, we have: Pr[E′0 ∧E′1 ∧E′2 ∧E′3] 6 ε2u Pr[E′1 ∧
E′2∧E′3] Which allows us to conclude: Pr[E0∧E1∧E2∧E3] 6 (ε2u+ 2` · εuti) Pr[E1∧E2∧E3],
or equivalently, eH is (ε2u + 2` · εuti)-vector universal.

Comparing tightness of security reductions. We here compare the quality of security
reductions obtained in [BBL17] to ours.

Consider a ring R, an instance of a δL-hard subgroup membership problem SM :=
(X̂,X, L̂,W,R), and associated (R, f, nf ,M,K) -ipfe-compatible PHF H. Further consider the
resulting EPHF eH, obtained via the generic construction of [CS02] (detailed in Section 3.4.3).

As explained in the previous two lemmas, in [BBL17], to build ind-fe-cpa-secure IPFE,
H must be translation indistinguishable (parametrised by εti), moreover to build ind-fe-cca-
secure IPFE, eH must be universal translation indistinguishable (parametrised by εuti) and a
slight variant of H must be universal2 (parametrised by ε2u). These properties imply δvs-vector
smoothness for H and δvu-vector universality for eH where δvs = ` · εti, and δvu = 2` · εuti+ ε2u.

Chosen plaintext attacks. The [BBL17] proof technique bounds adversarial advantage by:

AdvBBL17,fe-cpa
FE,A 6 2 · δL + ` · |∆M| · εti

where |∆M| 6 (4 · (nf2`)1/2)`. From our security proof this advantage is bound by:

Advfe-cpaFE,A 6 δL + δvu

We thus gain a factor |∆M|. We note that for projective hash functions where hash keys are
sampled uniformly from Khk this term disappears. Since such PHF’s are 0-vector smooth, in
this particular case the quality of our security reduction and that of [BBL17] coincide.

236

Chosen ciphertext attacks. The [BBL17] proof technique bounds adversarial advantage
by:

AdvBBL17,fe-cca
FE,A 6 2δL + `|∆M|(εti + 2εuti) + 2qdec|∆M|(ε2u + δcr + δOTS),

where |∆M| 6 (4(nf2`)1/2)`. From our security proof this advantage is bound by:

Advus,fe-cca
FE,A 6 δL + `(

qdecnf
nf − qdec + 1

2εuti + εti) + qdec(
nf

nf − qdec + 1
ε2u + δcr + δOTS)

For a message space of order nf of 128 bits, and allowing the adversary to make qdec = 220

decryption queries this yields:

Advfe-ccaBBL17 6 2 · δL + 266``1−`/2(εti + 2 · εuti) + 266`+21`−`/2(ε2u + δcr + δOTS),

whereas in this work:

Advus,fe-cpa
FE,A < δL + ` · (221εuti + εti) + 220(ε2u + δcr + δOTS)

Finally for vectors of length ` = 100:

Advfe-ccaBBL17 < 2δL + 26224(εti + 2εuti) + 26238(ε2u + δcr + δOTS),

whereas in this work:

Advus < δL + 227(εti + 2εuti) + 220(ε2u + δcr + δOTS)

We note that even if hashing keys are sampled uniformly, which sets εti = εuti = 0, our
security proof significantly reduces A’s advantage (we do not have the |∆M| term), which
allows us to use smaller keys, and significantly gain in efficiency. We demonstrate this in
Section 4.5, by comparing their instantiation from DCR to our instantiation from HSM-CL.

B Zero Knowledge Property of the ZKPoK for Rcl-dl
We here prove the zero-knowledge property of the protocol of Fig. 3.7, which is a ZKPoK for
the following relation:

Rcl-dl := {(hp, (c1, c2), Q); (x, r) | c1 = grq ∧ c2 = fxhpr ∧Q = xG}.

Our analysis follows the lines of that for the Girault-Poupard-Stern statistically zero-knowledge
identification scheme [GPS06], which we turn into a ZKPoK of the randomness used for en-
cryption and of the discrete logarithm of an element of G, using binary challenges. Our proof
is partly performed in a group of unknown order.

Theorem (Zero-Knowledge). The protocol described in Fig. 3.7 is statistically zero-knowledge
if ` is polynomial and `S/A is negligible.

Proof. We describe an expected polynomial time simulation of the communication between a
prover P and a malicious verifier V ∗. The verifier V ∗ may use an adaptive strategy to bias the
choice of the challenges to learn information about (x, r). This implies that challenges may not
be randomly chosen, which must be taken into account in the security proof. If we focus on
the i−th round of identification, V ∗ has already obtained data, denoted by hist, from previous
interactions with P . Then P sends the commitments t(i)1 , T

(i)
2 , t

(i)
3 and A2 chooses – possibly

using hist and t
(i)
1 , T

(i)
2 , t

(i)
3 – the challenge k(i)(t(i)1 , T

(i)
2 , t

(i)
3 , hist).

237

Input : (r, x) and (hp, c1, c2, Q, P) Input : (hp, c1, c2, Q, P)
Repeat ` times

r1 ←↩ {0, . . . , A− 1} ; r2 ←↩ Z/qZ

t1 ← hpr1f r2 ; T2 ← r2P ; t3 ← gr1q
t1, T2, t3−−−−−−−−−→

k←−−−−−−−−− k ←↩ {0, 1}
u1 ← r1 + kr in Z

u2 ← r2 + kx mod q
u1, u2−−−−−−−−−→ Check u1 ∈ {0, . . . , A+ S}

t1 · ck2 = hpu1 · fu2
T2 + k ·Q = u2 · P
t3 · ck1 = gu1q

Figure .1: The ZKPoK for Rcl-dl

Description of the simulator: Consider the simulator Si which simulates the i−th round
of identification as follows:

1. Choose random values k̄(i) ∈ {0, 1}, ū(i)
1 ∈ {S − 1, . . . , A− 1} and ū

(i)
2 ∈ Z/qZ.

2. Compute t̄1
(i) = hpū

(i)
1 f ū

(i)
2 /ck̄

(i)

2 ; T̄2
(i) = ū

(i)
2 P − k̄(i)Q and t̄3

(i) = g
ū
(i)
1
q /ck̄

(i)

1 .

3. If k(i)(t̄1
(i), T̄2

(i)
, t̄3

(i), hist) 6= k̄(i) then go to step 1, else return (t̄1
(i), T̄2

(i)
, t̄3

(i), k̄(i),

ū
(i)
1 , ū

(i)
2)

We now show that, as long as (S − 1) � A, the simulation outputs tuples which are
statistically indistinguishable of those output by a real execution of the protocol. The main task

is in demonstrating that the distribution of t̄1
(i) = hpū

(i)
1 f ū

(i)
2 /ck̄

(i)

2 ; T̄2
(i) = ū

(i)
2 P − k̄(i)Q and

t̄3
(i) = g

ū
(i)
1
q /ck̄

(i)

1 as computed by Si are statistically close to the distributions of t1 = hpr1f r2 ,
T2 = r2P and t3 = gr1q in the real execution.

Statistical indistinguishability of real and simulated triplets: To prove the distribution
of simulated triplets is statistically indistinguishable of the distribution of triplets in a real
execution we need to prove that Σ is negligible where

Σ =
∑

α1,α2,α3,β,γ1,γ2

|Pr[(t1, T2, t3, k, u1, u2) = (α1, α2, α3, β, γ1, γ2)]

−Pr[(t̄1, t̄2, t̄3, k̄, ū1, ū2) = (α1, α2, α3, β, γ1, γ2)]
∣∣ . (.1)

Let (α1, α2, α3, β, γ1, γ2) be a fixed tuple, we consider the probability of obtaining this tuple
(1) during one round of a real execution of the protocol and (2) during a simulation.

Distribution in a real execution: We assume P is honest, therefore:

Pr
[
(t1, T2, t3, k, u1, u2) = (α1, α2, α3, β, γ1, γ2)

]
= Pr

r1∈[0,A−1];r2∈Z/qZ

[
α1 = hpr1f r2 ∧ α2 = r2P ∧ α3 = gr1q ∧ β = k(α1, α2, α3, hist)

238

∧ γ1 = r1 + β · r ∧ γ2 = r2 + β · x mod q
]

=
∑

r1∈[0,A−1]

1
A

∑
r2∈Z/qZ

1
q
δ
(
α1 = hpγ1−β·rfγ2−β·x ∧ α2 = (γ2 − β · x)P ∧ α3 = gγ1−β·rq

∧ β = k(α1, α2, α3, hist) ∧ r1 = γ1 − β · r ∧ r2 = γ2 − β · x mod q
)

=
1
qA

δ
(
α1 = hpγ1fγ2/cβ2 ∧ α2 = γ2P − βQ ∧ α3 = gγ1q /c

β
1 ∧ β = k(α1, α2, α3, hist)

∧ γ1 − β · r ∈ [0, A− 1] ∧ γ2 − β · x ∈ Z/qZ mod q
)

=
1
qA

δ(α1 = hpγ1fγ2/cβ2)δ(α2 = γ2P − βQ)× δ(α3 = gγ1q /c
β
1)× δ(β = k(α1, α2, α3, hist))

× δ(γ1 − β · r ∈ [0, A− 1])δ(γ2 − β · x ∈ Z/qZ mod q) (∗)

Distribution in a simulated execution: We now consider the probability of obtaining the
tuple (α1, α2, α3, β, γ1, γ2) from the simulation described above, ie.

Pr[(t̄1, t̄2, t̄3, k̄, ū1, ū2) = (α1, α2, α3, β, γ1, γ2)].

This is a conditional probability given by:

Pr
ū1∈[S−1,A−1]

ū2∈Z/qZ;k̄∈{0,1}

[
α1 = hpū1f ū2/ck̄2 ∧ α2 = ū2P − k̄Q ∧ α3 = gū1q /c

k̄
1 ∧ β = k̄

∧ γ1 = ū1 ∧ γ2 = ū2 mod q|k̄ = k(α1, α2, α3, hist)
]
.

Using the definition of conditional probabilities this can be written as:

Prū1∈[S−1,A−1];ū2∈Z/qZ;k̄∈{0,1}

[
α1 = hpū1f ū2/ck̄2 ∧ α2 = ū2P − k̄Q ∧ α3 = gū1q /c

k̄
1∧

β = k̄ = k(α1, α2, α3, hist) ∧ γ1 = ū1 ∧ γ2 = ū2 mod q

]
Prū1∈[S−1,A−1];ū2∈Z/qZ;k̄∈{0,1}[k̄ = k(α1, α2, α3, hist)]

(.2)

We denote Q =
∑
ū1∈[S−1,A[;ū2∈Z/qZ;k̄∈{0,1} δ(k̄ = k(hpū1f ū2/ck̄2, ū2P − k̄Q, gū1q /ck̄1, hist)), and

can thus re-write the above denominator as:

Q

(A− (S − 1))× 2× q
.

So returning to the initial probability of obtaining (α1, α2, α3, β, γ1, γ2) as output from S,

Pr[(t̄1, t̄2, t̄3, k̄, ū1, ū2) = (α1, α2, α3, β, γ1, γ2)]

= Pr
ū1∈[S−1,A−1];
ū2∈Z/qZ;k̄∈{0,1}

[
α1 = hpū1f ū2/ck̄2 ∧ α2 = ū2P − k̄Q ∧ α3 = gū1q /c

k̄
1

∧ β = k̄ = k(α1, α2, α3, hist) ∧ γ1 = ū1 ∧ γ2 = ū2 mod q
]
· (A− (S − 1))× 2× q

Q

=
∑

k̄∈{0,1}

1
2

Pr
ū1∈[S−1,A−1];

ū2∈Z/qZ

[
α1 = hpū1f ū2/ck̄2 ∧ α2 = ū2P − k̄Q ∧ α3 = gū1q /c

k̄
1

∧ β = k̄ = k(α1, α2, α3, hist) ∧ γ1 = ū1 ∧ γ2 = ū2 mod q
]
· (A− (S − 1))× 2× q

Q

239

= Pr
ū1∈[S−1,A−1];

ū2∈Z/qZ

[
α1 = hpγ1fγ2/cβ2 ∧ α2 = γ2P − βQ ∧ α3 = gγ1q /c

β
1

∧ β = k(α1, α2, α3, hist)
]
· (A− (S − 1))× q

Q

=
∑

ū1∈[S−1,A−1];ū2∈Z/qZ

1
q × (A− (S − 1))

× δ(α1 = hpγ1fγ2/cβ2 ∧α2 = γ2P −βQ∧α3 = gγ1q /c
β
1

∧ β = k(α1, α2, α3, hist)) ·
(A− (S − 1))× q

Q

=
1
Q
× δ(α1 = hpγ1fγ2/cβ2)× δ(α2 = γ2P − βQ)× δ(α3 = gγ1q /c

β
1)

× δ(β = k(α1, α2, α3, hist))× δ(γ1 ∈ [S − 1, A− 1])× δ(γ2 ∈ Z/qZ) (∗∗)

Comparison of obtained distributions: Comparing (∗) and (∗∗) we can see thatQmust be
close to A in order for both distributions to be indistinguishable. Lemma B.1 allows us to count
how many triples (k̄, ū1, ū2) ∈ {0, 1}× [S−1, A−1]× [0, q−1] satisfy k̄ = k(hpū1f ū2/ck̄2, ū2P −
k̄Q, gū1q /c

k̄
1, hist).

Lemma B.1. If f is a function from G × G × G to {0, 1} and c1 ∈ {grq ; r ∈ [0, S − 1]},
Q ∈ {x · P ;x ∈ Z/pZ} and x2 = fxhpr then the total number N of solutions (k, u1, u2) ∈
{0, 1}× [S − 1, A− 1]× [0, q− 1] of the equation k = f(hpu1fu2/ck2, u2P − kQ, gu1q /ck1) satisfies
q(A− 2)(S − 1) ¬ N ¬ qA.

The proof of Lemma B.1 is essentially that of [GPS06, Lemma 3]. Hence we do not provide
it here. Now from Lemma B.1 it holds that q(A − 2(S − 1)) ¬ Q ¬ qA. We can now bound
the distance between the distribution of simulated triplets and the distribution of triplets in a
real execution:

Σ =
∑

α1,α2,α3,β,γ1,γ2

|Pr[(t1, T2, t3, k, u1, u2) = (α1, α2, α3, β, γ1, γ2)]

−Pr[(t̄1, t̄2, t̄3, k̄, ū1, ū2) = (α1, α2, α3, β, γ1, γ2)]
∣∣

=
∑

α1,α2,α3,β,γ2,γ1∈[S−1,A−1]

|Pr[(t1, T2, t3, k, u1, u2) = (α1, α2, α3, β, γ1, γ2)]

−Pr[(t̄1, t̄2, t̄3, k̄, ū1, ū2) = (α1, α2, α3, β, γ1, γ2)]
∣∣

+
∑

α1,α2,α3,β,γ2,γ1 /∈[S−1,A−1]

Pr[(t1, T2, t3, k, u1, u2) = (α1, α2, α3, β, γ1, γ2)]

=
∑

γ1∈[S−1,A[,γ2∈[0,q[,β∈{0,1},
α1=hpγ1fγ2/c

β
2 ,α2=γ2P−βQ,α3=g

γ1
q /cβ1

∣∣∣∣∣ 1/(qA)× δ(β = k(α1, α2, α3, hist))
−1/Q× δ(β = k(α1, α2, α3, hist))

∣∣∣∣∣
+

1−
∑

α1,α2,α3,β,γ2,γ1∈[S−1,A−1]

Pr[(t1, T2, t3, k, u1, u2) = (α1, α2, α3, β, γ1, γ2)]

= (|1/(qA)− 1/Q| ×Q) + 1−

∑
γ1∈[S−1,A[,γ2∈[0,q[,β∈{0,1},

α1=hpγ1fγ2/c
β
2 ,α2=γ2P−βQ,α3=g

γ1
q /cβ1

1
qA

δ(β = k(α1, α2, α3, hist))

=
|Q− qA|
qA

+ 1− Q

qA
¬ 2
|Q− qA|
qA

240

But from Lemma B.1 we know that q(A− 2(S − 1)) ¬ Q ¬ qA so 2|Q− qA| ¬ 4q(S − 1) and

Σ ¬ 4(S − 1)
A

<
8S
A
.

This proves the real and simulated distributions are statistically indistinguishable if 2S/A is
negligible.

Running time of the Simulator: Step 3 outputs a tuple (t̄1
(i), T̄2

(i)
, t̄3

(i), k̄(i), ū
(i)
1 , ū

(i)
2) if

k(i)(t̄1
(i), T̄2

(i)
, t̄3

(i), hist) = k̄(i).

We proved earlier that

Pr
ū1∈[S−1,A−1];ū2∈Z/qZ;k̄∈{0,1}

[k̄ = k(hpū1f ū2/ck̄2, ū2P−k̄Q, gū1q /ck̄1, hist)] =
Q

(A− (S − 1))× 2× q
,

and that q(A− 2(S− 1)) ¬ Q ¬ qA so the probability of success at step 3 is bounded between

1
2

(
1− (S − 1)/A

1− (S − 1)/A

)
and

1
2

(
1

1− (S − 1)/A

)
.

Since 2S/A is negligible, this quantity is essentially 1/2, and so the expected number of
iterations of the loop is 2. Therefore the complexity of the simulation of all ` rounds is O(`).

Conclusion: If `S/A is negligible and ` is polynomial, the protocol is statistically zero-
knowledge.

C Lindell’s interactive assumption on Paillier’s cryptosystem
In order to prove the security of his 2-party EC-DSA, Lindell introduced in [Lin17a] the
following ad hoc interactive assumption, called Paillier-EC assumption. It is defined via the
following random experiment.

Experiment ExpA(1λ)

(pk, sk)← Paillier.KeyGen(1λ)
(ω0, ω1)←↩ Z/qZ, Q← ω0P
b? ←↩ {0, 1},
c? ← Paillier.Enc(1λ, pk, ωb?)
b←AOc? (·,·,·)(pk, c?, Q)
if b = b? then return 1
else return 0

where 1 ← Oc?(c′, α, β) if and only if Paillier.Dec(1λ, sk, c′) = α + βωb? mod q and O stops
after the first time it returns 0. The Paillier-EC assumption is hard if for every PPT adversary
A Pr[ExpA(1λ) = 1] ¬ 12 + negl(λ).

241

	Résumé
	Abstract
	Remerciements/Acknowledgment
	Contents
	Résumé long en français
	Introduction
	Advanced Cryptography
	Projective Hash Functions
	Linearly Homomorphic Encryption and the cl Framework
	Instantiating the cl Framework from Class Groups
	Contributions
	Projective Hash Functions from the cl Framework
	Zero-knowledge Proofs and Arguments for the cl Framework
	Tighter Security and Improved Efficiency for Functional Encryption
	Distributing the Elliptic Curve Digital Signature Algorithm

	Road Map

	Preliminaries
	Notations
	Secure Multi-Party Computation (mpc)
	Provable Security
	Adversary Model
	Security Definitions

	Common Problems
	Discrete Logarithm Problems
	The Decisional Composite Residuosity Problem

	Basic Cryptographic Primitives
	Public Key Encryption
	Linearly Homomorphic Public Key Encryption
	Collision Resistant Hashing
	Signature Schemes
	Commitments

	Background on Class Groups
	Imaginary Quadratic Fields and Class Groups
	The Discrete Logarithm Problem and Computing the Class Number
	Key Sizes and Timings

	Distributions
	Sampling Close to the Uniform Distribution
	Properties of Almost Uniform Distributions
	Technical Tools on Discrete Gaussian Distributions

	Zero-Knowledge Proofs and Arguments
	Zero-Knowledge Proofs
	Zero-Knowledge Arguments
	Groups of Unknown Order

	Enriching the CL framework
	The CL Framework
	Definition of the CL Framework
	Instantiation from Class Group Cryptography
	Instantiating Distributions

	Hard Problems in the CL Framework
	Hard Subgroup Membership Problem
	Decision Diffie Hellman
	Extended Decision Diffie Hellman in F
	Low Order & Strong Root Assumptions
	Summary of Assumptions in the cl Framework

	Projective Hash Functions from the cl Framework
	Subgroup Membership Problems
	Projective Hash Functions
	Homomorphic Properties
	Smoothness
	Decomposability

	Public Key Encryption from Projective Hash Functions
	Security against Passive Adversaries
	Security against Active Adversaries
	Extended Projective Hash Functions

	Linearly Homomorphic PKE from the CL Framework
	Original Castagnos-Laguillaumie PKE Secure under DDH-f
	Enhanced Variant Secure under DDH-f
	Linearly Homomorphic PKE Secure under HSM
	Relations between Assumptions ddhcl, ddhf and hsm

	Zero-Knowledge Proofs for the CL Framework
	A Zero-Knowledge Proof of Knowledge for Rcldl
	A trick to improve efficiency.

	Zero-Knowledge Arguments for the CL Framework

	Functional Encryption for Computing Inner Products
	Inner Product Functional Encryption
	Inner Product Functional Encryption
	Security

	Building ipfe from phf
	Compatibility Properties for phfs
	Associated Matrix
	Confidentiality
	Integrity
	Inner Product Safe phfs

	IPFE Secure against Passive Adversaries from PHFs
	Generic Construction
	Computing Inner Products Modulo a Prime

	IPFE Secure against Active Adversaries from PHFs
	Efficiency Comparisons
	Modular ipfe Secure against Passive Adversaries
	ipfe Secure against Active Adversaries

	Applications and Perspectives for Future Work
	Application to Non Zero Inner Product Encryption
	Simulation Based Security

	Distributing EC-DSA
	Threshold Signature Algorithms
	Threshold Signature Scheme
	The Elliptic Curve Digital Signature Algorithm (ecdsa)
	Security Notions for Threshold Signatures

	Two Party ecdsa from phfs
	The Double Encoding Problem
	ecdsa-Friendly phf
	Zero-Knowledge Proofs
	Construction
	Simulation Based Security
	Instantiation from the hsm Based phf
	Implementation and Efficiency Comparisons

	Full Threshold ecdsa
	A Note on the Underlying Assumptions
	Interactive Setup for the hsm Based Encryption Scheme
	Full Threshold ecdsa Protocol
	Security
	Efficiency Comparisons

	Conclusion and Open Problems
	Bibliography
	List of abbreviations
	List of figures
	List of tables
	Appendix
	Comparing our phf properties to those of BBL17
	Zero Knowledge Property of the ZKPoK for Rcldl
	Lindell's interactive assumption on Paillier's cryptosystem

